Suppr超能文献

通过对一年连续的管内监测数据的分析来评估管内过程的特征时间和空间尺度。

Assessing characteristic time and space scales of in-sewer processes by analysis of one year of continuous in-sewer monitoring data.

机构信息

Royal Haskoning, Nijmegen, The Netherlands.

出版信息

Water Sci Technol. 2012;66(8):1614-20. doi: 10.2166/wst.2012.115.

Abstract

Long-term and high-frequency in-sewer monitoring opens up a broad range of possibilities to study (influences on) water quantity and quality variations. Using data from the Eindhoven wastewater system in The Netherlands both dry weather flow and wet weather flow situations have been studied. For approximately 160 dry weather days mean diurnal variations of flow and pollutant concentrations have been derived. For wet weather situations (≈ 40 storm events) peak load factors have been studied. Generally, peak load factors for all considered pollutant parameters are larger than one. Peak load factors for particulate matter are larger than for dissolved constituents. Also, the smallest catchment area consistently shows the largest mean peak factors and vice versa.

摘要

长期高频的管内监测为研究(影响)水量和水质变化提供了广泛的可能性。本文利用荷兰埃因霍温污水系统的数据,对旱季和雨季的情况都进行了研究。在大约 160 个旱季中,得出了流量和污染物浓度的日均值变化。对于雨季情况(约 40 次暴雨事件),研究了高峰负荷系数。一般来说,所有考虑的污染物参数的高峰负荷系数都大于 1。对于颗粒物的高峰负荷系数大于对于溶解成分的高峰负荷系数。此外,最小的汇水区始终显示出最大的平均高峰因子,反之亦然。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验