Suppr超能文献

多目标的多群体:求解多目标优化问题的协同进化技术。

Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems.

出版信息

IEEE Trans Cybern. 2013 Apr;43(2):445-63. doi: 10.1109/TSMCB.2012.2209115. Epub 2013 Mar 7.

Abstract

Traditional multiobjective evolutionary algorithms (MOEAs) consider multiple objectives as a whole when solving multiobjective optimization problems (MOPs). However, this consideration may cause difficulty to assign fitness to individuals because different objectives often conflict with each other. In order to avoid this difficulty, this paper proposes a novel coevolutionary technique named multiple populations for multiple objectives (MPMO) when developing MOEAs. The novelty of MPMO is that it provides a simple and straightforward way to solve MOPs by letting each population correspond with only one objective. This way, the fitness assignment problem can be addressed because the individuals' fitness in each population can be assigned by the corresponding objective. MPMO is a general technique that each population can use existing optimization algorithms. In this paper, particle swarm optimization (PSO) is adopted for each population, and coevolutionary multiswarm PSO (CMPSO) is developed based on the MPMO technique. Furthermore, CMPSO is novel and effective by using an external shared archive for different populations to exchange search information and by using two novel designs to enhance the performance. One design is to modify the velocity update equation to use the search information found by different populations to approximate the whole Pareto front (PF) fast. The other design is to use an elitist learning strategy for the archive update to bring in diversity to avoid local PFs. CMPSO is comprehensively tested on different sets of benchmark problems with different characteristics and is compared with some state-of-the-art algorithms. The results show that CMPSO has superior performance in solving these different sets of MOPs.

摘要

传统的多目标进化算法 (MOEAs) 在解决多目标优化问题 (MOPs) 时,将多个目标视为一个整体。然而,这种考虑可能会导致为个体分配适应度变得困难,因为不同的目标通常相互冲突。为了避免这种困难,本文在开发 MOEAs 时提出了一种名为多目标多群体 (MPMO) 的新协同进化技术。MPMO 的新颖之处在于,它通过让每个群体仅对应一个目标,提供了一种简单直接的方法来解决 MOPs。这样,个体在每个群体中的适应度分配问题就可以解决,因为每个群体中的个体适应度可以由相应的目标来分配。MPMO 是一种通用技术,每个群体都可以使用现有的优化算法。在本文中,采用粒子群优化 (PSO) 作为每个群体的算法,并基于 MPMO 技术开发了协同进化多群 PSO (CMPSO)。此外,CMPSO 通过使用外部共享档案让不同群体之间交换搜索信息,以及通过使用两个新的设计来增强性能,使其新颖而有效。一个设计是修改速度更新方程,以使用不同群体找到的搜索信息快速逼近整个 Pareto 前沿 (PF)。另一个设计是使用精英学习策略更新档案,以引入多样性来避免局部 PF。CMPSO 在具有不同特征的不同基准问题集上进行了全面测试,并与一些最先进的算法进行了比较。结果表明,CMPSO 在解决这些不同的 MOPs 集方面表现出了优越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验