Suppr超能文献

一种基于聚类的带网格排序的竞争粒子群优化算法用于多目标优化问题

A clustering-based competitive particle swarm optimization with grid ranking for multi-objective optimization problems.

作者信息

Ye Qianlin, Wang Zheng, Zhao Yanwei, Dai Rui, Wu Fei, Yu Mengjiao

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.

School of Computer and Computational Sciences, Hangzhou City University, Hangzhou, 310015, China.

出版信息

Sci Rep. 2023 Jul 20;13(1):11754. doi: 10.1038/s41598-023-38529-4.

Abstract

The goal of the multi-objective optimization algorithm is to quickly and accurately find a set of trade-off solutions. This paper develops a clustering-based competitive multi-objective particle swarm optimizer using the enhanced grid for solving multi-objective optimization problems, named EGC-CMOPSO. The enhanced grid mechanism involved in EGC-CMOPSO is designed to locate superior Pareto optimal solutions. Subsequently, a hierarchical-based clustering is established on the grid for improving the accuracy rate of the grid selection. Due to the adaptive division of clustering centers, EGC-CMOPSO is applicable for solving MOPs with various Pareto front (PF) shapes. Particularly, the inferior solutions are discarded and the leading particles are identified by the comprehensive ranking of particles in each cluster. Finally, the selected leading particles compete against each other, and the winner guides the update of the current particle. The proposed EGC-CMOPSO and the eight latest multi-objective optimization algorithms are performed on 21 test problems. The experimental results validate that the proposed EGC-CMOPSO is capable of handling multi-objective optimization problems (MOPs) and obtaining superior performance on both convergence and diversity.

摘要

多目标优化算法的目标是快速准确地找到一组折衷解。本文提出了一种基于聚类的竞争性多目标粒子群优化器,利用增强网格来解决多目标优化问题,称为EGC-CMOPSO。EGC-CMOPSO中涉及的增强网格机制旨在定位优帕累托最优解。随后,在网格上建立基于层次的聚类,以提高网格选择的准确率。由于聚类中心的自适应划分,EGC-CMOPSO适用于求解具有各种帕累托前沿(PF)形状的多目标优化问题。特别地,通过对每个聚类中的粒子进行综合排名来丢弃劣解并识别领先粒子。最后,所选的领先粒子相互竞争,获胜者引导当前粒子的更新。在21个测试问题上对所提出的EGC-CMOPSO和八种最新的多目标优化算法进行了测试。实验结果验证了所提出的EGC-CMOPSO能够处理多目标优化问题(MOPs),并在收敛性和多样性方面获得优异性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0da/10359354/e8198613fca0/41598_2023_38529_Fig1_HTML.jpg

相似文献

2
Multi-objective particle swarm optimization with reverse multi-leaders.
Math Biosci Eng. 2023 May 9;20(7):11732-11762. doi: 10.3934/mbe.2023522.
3
Multiobjective Particle Swarm Optimization Based on Cosine Distance Mechanism and Game Strategy.
Comput Intell Neurosci. 2021 Nov 6;2021:6440338. doi: 10.1155/2021/6440338. eCollection 2021.
4
Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer.
IEEE Trans Cybern. 2020 Aug;50(8):3696-3708. doi: 10.1109/TCYB.2019.2906383. Epub 2019 Apr 3.
6
A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization With Irregular Pareto Fronts.
IEEE Trans Cybern. 2019 Jul;49(7):2758-2770. doi: 10.1109/TCYB.2018.2834466. Epub 2018 Jun 5.
8
Particle Swarm Optimization Algorithm With Self-Organizing Mapping for Nash Equilibrium Strategy in Application of Multiobjective Optimization.
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):5179-5193. doi: 10.1109/TNNLS.2020.3027293. Epub 2021 Oct 27.
9
An Adaptive Multiobjective Particle Swarm Optimization Based on Multiple Adaptive Methods.
IEEE Trans Cybern. 2017 Sep;47(9):2754-2767. doi: 10.1109/TCYB.2017.2692385. Epub 2017 Apr 17.
10
Learning Competitive Swarm Optimization.
Entropy (Basel). 2022 Feb 16;24(2):283. doi: 10.3390/e24020283.

本文引用的文献

2
Efficient network architecture search via multiobjective particle swarm optimization based on decomposition.
Neural Netw. 2020 Mar;123:305-316. doi: 10.1016/j.neunet.2019.12.005. Epub 2019 Dec 16.
3
A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization With Irregular Pareto Fronts.
IEEE Trans Cybern. 2019 Jul;49(7):2758-2770. doi: 10.1109/TCYB.2018.2834466. Epub 2018 Jun 5.
4
A Mixed Representation-Based Multiobjective Evolutionary Algorithm for Overlapping Community Detection.
IEEE Trans Cybern. 2017 Sep;47(9):2703-2716. doi: 10.1109/TCYB.2017.2711038. Epub 2017 Jun 13.
5
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
IEEE Trans Cybern. 2017 Sep;47(9):2794-2808. doi: 10.1109/TCYB.2017.2710133. Epub 2017 Jun 12.
6
Biased Multiobjective Optimization and Decomposition Algorithm.
IEEE Trans Cybern. 2017 Jan;47(1):52-66. doi: 10.1109/TCYB.2015.2507366. Epub 2016 Feb 3.
7
8
Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems.
IEEE Trans Cybern. 2013 Apr;43(2):445-63. doi: 10.1109/TSMCB.2012.2209115. Epub 2013 Mar 7.
9
Comparison of multiobjective evolutionary algorithms: empirical results.
Evol Comput. 2000 Summer;8(2):173-95. doi: 10.1162/106365600568202.
10
Approximating the nondominated front using the Pareto Archived Evolution Strategy.
Evol Comput. 2000 Summer;8(2):149-72. doi: 10.1162/106365600568167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验