Suppr超能文献

从具有一般未知光照下的阴影的面部图像中进行稳健的反射率估计。

Robust albedo estimation from a facial image with cast shadow under general unknown lighting.

机构信息

Manufacturing Engineering Institute, Samsung Electro-Mechanics Co. Ltd., Gyunggi-Do 443-743, Korea.

出版信息

IEEE Trans Image Process. 2013 Jan;22(1):391-401. doi: 10.1109/TIP.2012.2214042. Epub 2012 Aug 17.

Abstract

Albedo estimation from a facial image is crucial for various computer vision tasks, such as 3-D morphable-model fitting, shape recovery, and illumination-invariant face recognition, but the currently available methods do not give good estimation results. Most methods ignore the influence of cast shadows and require a statistical model to obtain facial albedo. This paper describes a method for albedo estimation that makes combined use of image intensity and facial depth information for an image with cast shadows and general unknown light. In order to estimate the albedo map of a face, we formulate the albedo estimation problem as a linear programming problem that minimizes intensity error under the assumption that the surface of the face has constant albedo. Since the solution thus obtained has significant errors in certain parts of the facial image, the albedo estimate needs to be compensated. We minimize the mean square error of albedo under the assumption that the surface normals, which are calculated from the facial depth information, are corrupted with noise. The proposed method is simple and the experimental results show that this method gives better estimates than other methods.

摘要

从面部图像估计反照率对于各种计算机视觉任务至关重要,例如 3-D 可变形模型拟合、形状恢复和光照不变人脸识别,但目前可用的方法并不能给出很好的估计结果。大多数方法忽略了投影阴影的影响,并且需要统计模型来获得面部反照率。本文描述了一种用于具有投影阴影和一般未知光照的图像的反照率估计方法,该方法结合使用了图像强度和面部深度信息。为了估计面部的反照率图,我们将反照率估计问题表示为一个线性规划问题,该问题在假设面部表面具有恒定反照率的情况下最小化强度误差。由于由此获得的解在面部图像的某些部分有很大的误差,因此需要补偿反照率估计。我们在假设从面部深度信息计算出的表面法向量受到噪声干扰的情况下,最小化反照率的均方误差。所提出的方法简单,实验结果表明该方法比其他方法给出了更好的估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验