Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
PLoS Genet. 2012;8(8):e1002834. doi: 10.1371/journal.pgen.1002834. Epub 2012 Aug 9.
Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led us to suggest that DR commonly suppresses translation, while stimulating an ancient reproduction-related process.
饮食限制(DR),即在不造成营养不良的情况下限制饮食中的营养摄入,可延缓衰老过程并延长多种生物的寿命。DR 的保守延寿作用表明其涉及基本机制,尽管这些机制仍存在争议。为了帮助破译 DR 的延寿机制,我们首先编制了一份基因列表,如果这些基因发生遗传改变,就会破坏或阻止 DR 的延寿作用。我们称这些基因为 DR 必需基因,并在酵母、蠕虫、苍蝇和老鼠等模式生物中鉴定出了 100 多个。为了让其他研究人员从 DR 必需基因的第一个经过精心整理的基因列表中受益,我们建立了一个名为 GenDR(http://genomics.senescence.info/diet/)的在线数据库。为了剖析 DR 必需基因的相互作用并发现潜在的延寿机制,我们随后使用各种网络和系统生物学方法来分析 DR 的基因网络。我们发现,DR 必需基因在分子水平上更保守,并且具有比预期更多的分子相互作用。此外,我们采用了一种关联罪责的方法来预测新的 DR 必需基因。在 budding yeast 中,我们预测了与液泡功能相关的九个基因;我们通过实验表明,缺失其中八个基因的突变会阻止 DR 的延寿作用。这些突变体中有三个(OPT2、FRE6 和 RCR2)在自由进食下延长了寿命,这表明在 DR 下缺乏进一步的长寿不是由一般的适应能力下降引起的。这些结果表明,使用 GenDR 对 DR 进行网络分析可以用于做出表型相关的预测。此外,基因调控电路表明,DR 诱导的 yeast 转录特征涉及营养感应、应激反应和减数分裂转录因子。最后,比较 DR 对多个生物体相互作用组的基因表达变化的影响使我们提出,DR 通常会抑制翻译,同时刺激一种古老的与繁殖相关的过程。