Suppr超能文献

一种将 2D 图案转录为功能 3D 结构的定量模型。

A quantitative model for the transcription of 2D patterns into functional 3D architectures.

机构信息

Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland.

出版信息

Nat Chem. 2012 Sep;4(9):746-50. doi: 10.1038/nchem.1429. Epub 2012 Aug 19.

Abstract

Self-sorting on surfaces is one of the big challenges that must be addressed in preparing the organic materials of the future. Here, we introduce a theoretical framework for templated self-sorting on surfaces, and validate it experimentally. In our approach, the transcription of two-dimensional information encoded in a monolayer on the surface into three-dimensional supramolecular architectures is quantified by the intrinsic templation efficiency, a thickness-independent value describing the fidelity of transcription per layer. The theoretical prediction that exceedingly high intrinsic efficiencies will be needed to experimentally observe templated self-sorting is then confirmed experimentally. Intrinsic templation efficiencies of up to 97%, achieved with a newly introduced templated synthesis strategy, result in maximal 47% effective templation efficiency at a thickness of 70 layers. The functional relevance of surface-templated self-sorting and meaningful dependences of templation efficiencies on structural modifications are demonstrated.

摘要

表面的自分类是未来有机材料制备必须解决的重大挑战之一。在这里,我们引入了一个表面模板自分类的理论框架,并通过实验进行了验证。在我们的方法中,通过固有模板效率来量化二维信息在表面单层中的转录为三维超分子结构,这是一个不依赖于厚度的值,描述了每个层的转录保真度。然后通过实验证实了实验中观察到模板自分类需要极高的固有效率的理论预测。通过新引入的模板合成策略,实现了高达 97%的固有模板效率,在 70 层的厚度下,有效模板效率最高可达 47%。证明了表面模板自分类的功能相关性和模板效率对结构修饰的有意义的依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验