Suppr超能文献

基于独立分量分析的心电信号的检测增强。

Electrocardiogram beat detection enhancement using independent component analysis.

机构信息

Department of Cybernetics, Faculty of Electrical Engineering, CTU in Prague, Prague, Czech Republic.

出版信息

Med Eng Phys. 2013 Jun;35(6):704-11. doi: 10.1016/j.medengphy.2012.07.017. Epub 2012 Aug 22.

Abstract

Beat detection is a basic and fundamental step in electrocardiogram (ECG) processing. In many ECG applications strong artifacts from biological or technical sources could appear and cause distortion of ECG signals. Beat detection algorithm desired property is to avoid these distortions and detect beats in any situation. Our developed method is an extension of Christov's beat detection algorithm, which detects beat using combined adaptive threshold on transformed ECG signal (complex lead). Our offline extension adds estimation of independent components of measured signal into the transformation of ECG creating a signal called complex component, which enhances ECG activity and enables beat detection in presence of strong noises. This makes the beat detection algorithm much more robust in cases of unpredictable noise appearances, typical for holter ECGs and telemedicine applications of ECG. We compared our algorithm with the performance of our implementation of the Christov's and Hamilton's beat detection algorithm.

摘要

心跳检测是心电图(ECG)处理中的基本和基础步骤。在许多 ECG 应用中,可能会出现来自生物或技术源的强烈伪影,导致 ECG 信号失真。心跳检测算法所需的特性是避免这些失真,并在任何情况下检测心跳。我们开发的方法是 Christov 的心跳检测算法的扩展,该算法使用变换后的 ECG 信号(复合导联)上的组合自适应阈值来检测心跳。我们的离线扩展将测量信号的独立分量的估计值添加到 ECG 的变换中,创建一个称为复合分量的信号,该信号增强了 ECG 活动,并能够在存在强噪声的情况下检测心跳。这使得心跳检测算法在难以预测的噪声出现情况下更加稳健,这是 Holter ECG 和 ECG 的远程医疗应用的典型情况。我们将我们的算法与我们实现的 Christov 和 Hamilton 心跳检测算法的性能进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验