Suppr超能文献

一种用于可穿戴单导联心电图设备的 QRS 检测和 R 点识别方法。

A QRS Detection and R Point Recognition Method for Wearable Single-Lead ECG Devices.

机构信息

Department of Aeronautics and Astronautics, National Cheng-Kung University, Tainan 70101, Taiwan.

Industrial Technology Research Institute, Tainan 70101, Taiwan.

出版信息

Sensors (Basel). 2017 Aug 26;17(9):1969. doi: 10.3390/s17091969.

Abstract

In the new-generation wearable Electrocardiogram (ECG) system, signal processing with low power consumption is required to transmit data when detecting dangerous rhythms and to record signals when detecting abnormal rhythms. The QRS complex is a combination of three of the graphic deflection seen on a typical ECG. This study proposes a real-time QRS detection and R point recognition method with low computational complexity while maintaining a high accuracy. The enhancement of QRS segments and restraining of P and T waves are carried out by the proposed ECG signal transformation, which also leads to the elimination of baseline wandering. In this study, the QRS fiducial point is determined based on the detected crests and troughs of the transformed signal. Subsequently, the R point can be recognized based on four QRS waveform templates and preliminary heart rhythm classification can be also achieved at the same time. The performance of the proposed approach is demonstrated using the benchmark of the MIT-BIH Arrhythmia Database, where the QRS detected sensitivity (Se) and positive prediction (+P) are 99.82% and 99.81%, respectively. The result reveals the approach's advantage of low computational complexity, as well as the feasibility of the real-time application on a mobile phone and an embedded system.

摘要

在新一代可穿戴式心电图(ECG)系统中,需要低功耗的信号处理来传输检测到危险节律时的数据,并在检测到异常节律时记录信号。QRS 复合波是典型心电图上看到的三个图形偏转的组合。本研究提出了一种实时 QRS 检测和 R 点识别方法,具有低计算复杂度,同时保持高精度。通过所提出的 ECG 信号变换来增强 QRS 段并抑制 P 和 T 波,还可以消除基线漂移。在本研究中,根据变换信号的检测到的波峰和波谷来确定 QRS 基准点。随后,可以基于四个 QRS 波形模板识别 R 点,并同时实现初步的心率分类。该方法的性能通过麻省理工学院-贝斯以色列女执事医疗中心心律失常数据库的基准进行了验证,其中 QRS 检测灵敏度(Se)和阳性预测(+P)分别为 99.82%和 99.81%。结果表明,该方法具有低计算复杂度的优势,并且可以在移动电话和嵌入式系统上实时应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e71e/5621148/1f026489be16/sensors-17-01969-g001.jpg

相似文献

1
A QRS Detection and R Point Recognition Method for Wearable Single-Lead ECG Devices.
Sensors (Basel). 2017 Aug 26;17(9):1969. doi: 10.3390/s17091969.
2
A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm.
Comput Methods Programs Biomed. 2017 Jun;144:61-75. doi: 10.1016/j.cmpb.2017.02.028. Epub 2017 Mar 18.
3
Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device.
Comput Biol Med. 2020 Jan;116:103540. doi: 10.1016/j.compbiomed.2019.103540. Epub 2019 Nov 12.
4
A Real-Time QRS Detection System With PR/RT Interval and ST Segment Measurements for Wearable ECG Sensors Using Parallel Delta Modulators.
IEEE Trans Biomed Circuits Syst. 2018 Aug;12(4):751-761. doi: 10.1109/TBCAS.2018.2823275. Epub 2018 May 7.
5
A joint QRS detection and data compression scheme for wearable sensors.
IEEE Trans Biomed Eng. 2015 Jan;62(1):165-75. doi: 10.1109/TBME.2014.2342879. Epub 2014 Jul 24.
6
QRS complex detection in ECG signal for wearable devices.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5940-3. doi: 10.1109/EMBC.2015.7319744.
7
A 2.66 µW Clinician-Like Cardiac Arrhythmia Watchdog Based on P-QRS-T for Wearable Applications.
IEEE Trans Biomed Circuits Syst. 2022 Oct;16(5):793-806. doi: 10.1109/TBCAS.2022.3184971. Epub 2022 Nov 30.
8
Robust Heartbeat Classification for Wearable Single-Lead ECG via Extreme Gradient Boosting.
Sensors (Basel). 2021 Aug 5;21(16):5290. doi: 10.3390/s21165290.
9
Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic templates.
Comput Biol Med. 2014 Sep;52:153-65. doi: 10.1016/j.compbiomed.2014.07.002. Epub 2014 Jul 11.
10
An Improved Real-Time R-Wave Detection Efficient Algorithm in Exercise ECG Signal Analysis.
J Healthc Eng. 2020 Jul 29;2020:8868685. doi: 10.1155/2020/8868685. eCollection 2020.

引用本文的文献

1
Data analysis protocol for early autonomic dysfunction characterization after severe traumatic brain injury.
Front Neurol. 2024 Dec 24;15:1484986. doi: 10.3389/fneur.2024.1484986. eCollection 2024.
2
Fast Parabolic Fitting: An R-Peak Detection Algorithm for Wearable ECG Devices.
Sensors (Basel). 2023 Oct 28;23(21):8796. doi: 10.3390/s23218796.
3
Automated Affective Computing Based on Bio-Signals Analysis and Deep Learning Approach.
Sensors (Basel). 2022 Feb 24;22(5):1789. doi: 10.3390/s22051789.
4
Automatic Premature Ventricular Contraction Detection Using Deep Metric Learning and KNN.
Biosensors (Basel). 2021 Mar 4;11(3):69. doi: 10.3390/bios11030069.
5
The hidden waves in the ECG uncovered revealing a sound automated interpretation method.
Sci Rep. 2021 Feb 12;11(1):3724. doi: 10.1038/s41598-021-82520-w.
7
A Graph-constrained Changepoint Detection Approach for ECG Segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:332-336. doi: 10.1109/EMBC44109.2020.9175333.
8
An Improved Real-Time R-Wave Detection Efficient Algorithm in Exercise ECG Signal Analysis.
J Healthc Eng. 2020 Jul 29;2020:8868685. doi: 10.1155/2020/8868685. eCollection 2020.
9
Sparse Analyzer Tool for Biomedical Signals.
Sensors (Basel). 2020 May 2;20(9):2602. doi: 10.3390/s20092602.

本文引用的文献

1
QRS detection using adaptive filters: A comparative study.
ISA Trans. 2017 Jan;66:362-375. doi: 10.1016/j.isatra.2016.09.023. Epub 2016 Oct 10.
2
A proposal for monitoring patients with heart failure via "smart phone technology"-based electrocardiograms.
J Electrocardiol. 2016 Sep-Oct;49(5):699-706. doi: 10.1016/j.jelectrocard.2016.06.001. Epub 2016 Jun 9.
3
Simple and Robust Realtime QRS Detection Algorithm Based on Spatiotemporal Characteristic of the QRS Complex.
PLoS One. 2016 Mar 4;11(3):e0150144. doi: 10.1371/journal.pone.0150144. eCollection 2016.
4
R-peaks detection based on stationary wavelet transform.
Comput Methods Programs Biomed. 2015 Oct;121(3):149-60. doi: 10.1016/j.cmpb.2015.06.003. Epub 2015 Jun 16.
5
Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic templates.
Comput Biol Med. 2014 Sep;52:153-65. doi: 10.1016/j.compbiomed.2014.07.002. Epub 2014 Jul 11.
6
ECG signal enhancement using adaptive Kalman filter and signal averaging.
Int J Cardiol. 2014 May 15;173(3):553-5. doi: 10.1016/j.ijcard.2014.03.128. Epub 2014 Mar 21.
7
Fragmented QRS: What Is The Meaning?
Indian Pacing Electrophysiol J. 2012 Sep;12(5):213-25. doi: 10.1016/s0972-6292(16)30544-7. Epub 2012 Sep 1.
8
Electrocardiogram beat detection enhancement using independent component analysis.
Med Eng Phys. 2013 Jun;35(6):704-11. doi: 10.1016/j.medengphy.2012.07.017. Epub 2012 Aug 22.
9
An innovative approach of QRS segmentation based on first-derivative, Hilbert and Wavelet Transforms.
Med Eng Phys. 2012 Nov;34(9):1236-46. doi: 10.1016/j.medengphy.2011.12.011. Epub 2012 Jan 9.
10
Real time electrocardiogram QRS detection using combined adaptive threshold.
Biomed Eng Online. 2004 Aug 27;3(1):28. doi: 10.1186/1475-925X-3-28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验