Suppr超能文献

木糖异构酶过表达以及戊糖磷酸途径工程和进化工程使酿酒酵母能够快速利用木糖并生产乙醇。

Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Metab Eng. 2012 Nov;14(6):611-22. doi: 10.1016/j.ymben.2012.07.011. Epub 2012 Aug 16.

Abstract

Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.

摘要

木糖是木质纤维素饲料中主要的戊糖和第二丰富的糖。为了提高木糖的利用率,这对于木质纤维素的经济高效生物转化是必要的,几种代谢工程方法已经被应用于酵母酿酒酵母。在这项研究中,我们描述了酿酒酵母菌株的合理代谢工程,包括过表达木糖异构酶基因(XYLA)、毕赤酵母木酮糖激酶(XYL3)和非氧化戊糖磷酸途径(PPP)的基因。该工程菌株(H131-A3)被用于初始化一个三阶段的进化工程过程,首先是有氧和厌氧分批培养,然后在木糖限制的恒化器中生长。进化株 H131-A3-AL(CS)表现出显著提高的厌氧生长速率(0.203±0.006 h⁻¹)和木糖消耗速率(1.866 g g⁻¹ h⁻¹),同时具有高乙醇转化产率(0.41 g/g)。这些数字显著超过了迄今为止报道的酿酒酵母在木糖利用和乙醇生产方面的任何其他性能指标。进一步基于功能互补的反向代谢工程表明,有效的木糖同化部分归因于木糖异构酶表达水平的提高,这是通过在进化菌株的染色体上进行 XYLA 的多拷贝整合来实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验