Suppr超能文献

无线平台控制一氧化氮释放光纤介导对植入设备的生物反应。

Wireless platform for controlled nitric oxide releasing optical fibers for mediating biological response to implanted devices.

机构信息

Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA.

出版信息

Nitric Oxide. 2012 Dec 1;27(4):228-34. doi: 10.1016/j.niox.2012.08.074. Epub 2012 Aug 14.

Abstract

Despite the documented potential to leverage nitric oxide generation to improve in vivo performance of implanted devices, a key limitation to current NO releasing materials tested thus far is that there has not been a means to modulate the level of NO release after it has been initiated. We report the fabrication of a wireless platform that uses light to release NO from a polymethylmethacrylate (PMMA) optical fiber coated with an S-nitroso-N-acetylpenicillamine derivatized polydimethylsiloxane (SNAP-PDMS). We demonstrate that a VAOL-5GSBY4 LED (λ(dominant)=460 nm) can be used as a dynamic trigger to vary the level of NO released from 500 μm diameter coated PMMA. The ability to generate programmable sequences of NO flux from the surface of these coated fibers offers precise spatial and temporal control over NO release and provides a platform to begin the systematic study of in vivo physiological response to implanted devices. NO surface fluxes up to 3.88 ± 0.57 × 10(-10)mol cm(-2)min(-1) were achieved with -100 μm thick coatings on the fibers and NO flux was pulsed, ramped and held steady using the wireless platform developed. We demonstrate the NO release is linearly proportional to the drive current applied to the LED (and therefore level of light produced from the LED). This system allow the surface flux of NO from the fibers to be continuously changed, providing a means to determine the level and duration of NO needed to mediate physiological response to blood contacting and subcutaneous implants and will ultimately lead to the intelligent design of NO releasing materials tailored to specific patterns of NO release needed to achieve reliable in vivo performance for intravascular and subcutaneous sensors and potentially for a wide variety of other implanted biomedical devices.

摘要

尽管已经有文献证明可以利用一氧化氮的产生来提高植入设备的体内性能,但迄今为止,测试过的所有释放一氧化氮的材料都存在一个关键限制,即无法在一氧化氮释放开始后调节其释放水平。我们报告了一种无线平台的制造,该平台使用光从涂有 S-亚硝基-N-乙酰青霉胺衍生聚二甲基硅氧烷 (SNAP-PDMS) 的聚甲基丙烯酸甲酯 (PMMA) 光纤中释放一氧化氮。我们证明,VAOL-5GSBY4 LED(λ(dominant)=460nm)可以用作动态触发器,以改变 500μm 直径涂覆 PMMA 的一氧化氮释放水平。从这些涂覆光纤表面产生可编程一氧化氮通量序列的能力提供了对一氧化氮释放的精确时空控制,并为开始对植入设备的体内生理反应进行系统研究提供了一个平台。使用我们开发的无线平台,可以实现高达 3.88±0.57×10(-10)mol cm(-2)min(-1)的一氧化氮表面通量,并且可以对光纤上的-100μm 厚涂层进行脉冲、斜坡和稳定保持。我们证明一氧化氮释放与施加到 LED 的驱动电流成正比(因此与 LED 产生的光的水平成正比)。该系统允许光纤中一氧化氮的表面通量连续变化,从而提供了一种确定介导与血液接触和皮下植入物的生理反应所需的一氧化氮水平和持续时间的方法,并最终导致针对特定的一氧化氮释放模式进行智能设计的一氧化氮释放材料,以实现血管内和皮下传感器的可靠体内性能,并可能实现各种其他植入式生物医学设备的可靠体内性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验