Carnegie Mellon University, United States.
Carnegie Mellon University, United States.
Acta Biomater. 2019 May;90:122-131. doi: 10.1016/j.actbio.2019.04.004. Epub 2019 Apr 3.
The large, densely packed artificial surface area of artificial lungs results in rapid clotting and device failure. Surface generated nitric oxide (NO) can be used to reduce platelet activation and coagulation on gas exchange fibers, while not inducing patient bleeding due to its short half-life in blood. To generate NO, artificial lungs can be manufactured with PDMS hollow fibers embedded with copper nanoparticles (Cu NP) and supplied with an infusion of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). The SNAP reacts with Cu NP to generate NO. This study investigates clot formation and gas exchange performance of artificial lungs with either NO-generating Cu-PDMS or standard polymethylpentene (PMP) fibers. One miniature artificial lung (MAL) made with 10 wt% Cu-PDMS hollow fibers and one PMP control MAL were attached to sheep in parallel in a veno-venous extracorporeal membrane oxygenation circuit (n = 8). Blood flow through each device was set at 300 mL/min, and each device received a SNAP infusion of 0.12 μmol/min. The ACT was between 110 and 180 s in all cases. Blood flow resistance was calculated as a measure of clot formation on the fiber bundle. Gas exchange experiments comparing the two groups were conducted every 24 h at blood flow rates of 300 and 600 mL/min. Devices were removed once the resistance reached 3x baseline (failure) or following 72 h. All devices were imaged using scanning electron microscopy (SEM) at the inlet, outlet, and middle of the fiber bundle. The Cu-PDMS NO generating MALs had a significantly smaller increase in resistance compared to the control devices. Resistance rose from 26 ± 8 and 23 ± 5 in the control and Cu-PDMS devices, respectively, to 35 ± 8 mmHg/(mL/min) and 72 ± 23 mmHg/(mL/min) at the end of each experiment. The resistance and SEM imaging of fiber surfaces demonstrate lower clot formation on Cu-PDMS fibers. Although not statistically significant, oxygen transfer for the Cu-PDMS MALs was 13.3% less than the control at 600 mL/min blood flow rate. Future in vivo studies with larger Cu-PDMS devices are needed to define gas exchange capabilities and anticoagulant activity over a long-term study at clinically relevant ACTs. STATEMENT OF SIGNIFICANCE: In artificial lungs, the large, densely-packed blood contacting surface area of the hollow fiber bundle is critical for gas exchange but also creates rapid, surface-generated clot requiring significant anticoagulation. Monitoring of anticoagulation, thrombosis, and resultant complications has kept permanent respiratory support from becoming a clinical reality. In this study, we use a hollow fiber material that generates nitric oxide (NO) to prevent platelet activation at the blood contacting surface. This material is tested in vivo in a miniature artificial lung and compared against the clinical standard. Results indicated significantly reduced clot formation. Surface-focused anticoagulation like this should reduce complication rates and allow for permanent respiratory support by extending the functional lifespan of artificial lungs and can further be applied to other medical devices.
人工肺密集的大表面积会导致迅速凝结和设备故障。表面产生的一氧化氮(NO)可用于减少气体交换纤维上血小板的激活和凝结,同时由于其在血液中的半衰期短,不会引起患者出血。为了产生 NO,人工肺可以用嵌入铜纳米粒子(Cu NP)的 PDMS 中空纤维制造,并通过输注 NO 供体 S-亚硝基-N-乙酰青霉胺(SNAP)进行供应。SNAP 与 Cu NP 反应生成 NO。本研究调查了具有生成 NO 的 Cu-PDMS 或标准聚甲基戊烯(PMP)纤维的人工肺的血栓形成和气体交换性能。一个用 10wt% Cu-PDMS 中空纤维制造的微型人工肺(MAL)和一个 PMP 对照 MAL 被并联连接到绵羊的静脉-静脉体外膜肺氧合回路中(n=8)。每个装置的血流设置为 300 mL/min,每个装置接受 0.12 μmol/min 的 SNAP 输注。在所有情况下,ACT 均在 110 至 180 s 之间。血流阻力的计算是衡量纤维束上血栓形成的一种方法。以 300 和 600 mL/min 的血流速率进行了每隔 24 小时比较两组的气体交换实验。当阻力达到基线的 3 倍(故障)或 72 小时后,将设备移除。使用扫描电子显微镜(SEM)在纤维束的入口、出口和中间对所有设备进行成像。与对照装置相比,具有生成 NO 的 Cu-PDMS MAL 的阻力增加明显较小。阻力分别从对照和 Cu-PDMS 装置的 26±8 和 23±5 mmHg/(mL/min)增加到每个实验结束时的 35±8 mmHg/(mL/min)和 72±23 mmHg/(mL/min)。Cu-PDMS 纤维表面的阻力和 SEM 成像表明 Cu-PDMS 纤维上的血栓形成较少。尽管没有统计学意义,但在 600 mL/min 的血流速率下,Cu-PDMS MAL 的氧气转移比对照少 13.3%。需要具有更大 Cu-PDMS 装置的未来体内研究来定义在临床上相关的 ACT 下长期研究中的气体交换能力和抗凝活性。意义声明:在人工肺中,中空纤维束的密集、密集的血液接触表面积对于气体交换至关重要,但也会迅速产生表面生成的血栓,需要进行大量抗凝。对抗凝、血栓形成和由此产生的并发症的监测使永久性呼吸支持无法成为临床现实。在这项研究中,我们使用一种在血液接触表面产生一氧化氮(NO)的中空纤维材料来防止血小板激活。该材料在微型人工肺中进行了体内测试,并与临床标准进行了比较。结果表明血栓形成明显减少。像这样针对表面的抗凝应该可以降低并发症发生率,并通过延长人工肺的功能寿命来允许永久性呼吸支持,并且可以进一步应用于其他医疗设备。