Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, CSIC, Madrid, Spain.
J Mol Biol. 2012 Nov 2;423(4):503-14. doi: 10.1016/j.jmb.2012.07.024. Epub 2012 Aug 21.
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site-directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three-dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.
铜绿假单胞菌是一种机会性革兰氏阴性病原体。它通过利用多种机制定殖于不同的组织。其中一种机制可能涉及通过溶血磷脂酶 C 和磷酸胆碱磷酸酶(PchP)的顺序作用破坏宿主细胞膜。溶血磷脂酶 C 对磷脂酰胆碱的作用产生磷酸胆碱,磷酸胆碱被 PchP 水解为胆碱(Cho)和无机磷酸盐。关于该酶的现有生化数据表明,在催化循环和酶调节中涉及两个 Cho 结合位点。铜绿假单胞菌 PchP 的晶体结构已被确定。它折叠成三个结构域。第一个结构域包含所有参与催化的残基,并且在卤代酸脱卤酶超家族的蛋白质中高度保守。第二个结构域是 PchP 的特征,参与识别底物的 Cho 部分。第三个结构域稳定其他两个结构域的相对位置。幸运的是,PchP 的晶体结构在活性位点和另外一个位点捕获了 Bistris(2-[双(2-羟乙基)氨基]-2-(羟甲基)丙烷-1,3-二醇)分子。这代表了两个具有一个或两个抑制性 Bistris 分子的催化相关复合物,为 PchP 的功能和调节提供了基础。定点突变与生化实验相结合证实了结构观察结果,并证明了不同 Cho 识别和抑制位点之间的相互作用。PchP 与卤代酸脱卤酶家族的其他磷酸酶的结构比较提供了保守催化循环的三维图像和识别不同底物分子的结构基础。