Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany.
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria.
J Mol Biol. 2018 Mar 30;430(7):1004-1023. doi: 10.1016/j.jmb.2018.02.010. Epub 2018 Feb 17.
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (k/K=4.8×10sM) as well as arylsulfate 4-nitrophenyl sulfate (k/K=12sM). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, HO-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency.
有机硫酸酯的水解通过两种截然不同的机制进行,水要么攻击硫(S-O 键断裂),要么攻击碳(C-O 键断裂)。在伯烷基和仲烷基硫酸盐中,碳的攻击更有利,而在芳基硫酸盐和硫酸化糖中,硫的攻击更有利。这种机制上的区别反映在催化硫酸酯水解的酶的分类中:芳基硫酸酯酶(ASs)催化硫酸糖和芳基硫酸盐中的 S-O 断裂,而烷基硫酸酯酶则断裂烷基硫酸盐的 C-O 键。根瘤菌属(Sinorhizobium) meliloti 胆碱硫酸酯酶(SmCS)能有效地催化烷基硫酸盐胆碱-O-硫酸盐(k/K=4.8×10sM)以及芳基硫酸盐 4-硝基苯硫酸盐(k/K=12sM)的水解。其 2.8-Å 分辨率的 X 射线结构显示出一个埋藏的、主要疏水的活性位点,其中一个保守的谷氨酸(Glu386)在识别胆碱底物的季铵基团方面发挥作用。SmCS 在结构上与碱性磷酸酶超家族的成员相似,与二聚体 ASs 和四聚体膦酸单酯水解酶最为相似。尽管在亚基之间有超过 70%的氨基酸在结构上对齐(RMSDs 1.79-1.99Å),但寡聚体结构显示出明显不同的包装和亚基-亚基界面。后者在活性位点的形成中也起着重要的作用。对 ASs 典型的保守活性位点残基的突变、HO 标记研究和对磷酸酯的催化混杂行为的观察,证实了与碱性磷酸酶超家族成员的密切关系,并表明 SmCS 是一种 AS,它以极高的催化效率催化烷基硫酸盐酯中的 S-O 断裂。