Suppr超能文献

一种比较隐藏马尔可夫模型分析流程可识别谷物侵染真菌的特征蛋白。

A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi.

机构信息

Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Centre for Environment and Life Sciences, Perth, Western Australia, Australia.

出版信息

BMC Genomics. 2013 Nov 20;14:807. doi: 10.1186/1471-2164-14-807.

Abstract

BACKGROUND

Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes.

RESULTS

We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing.

CONCLUSIONS

Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms.

摘要

背景

真菌病原体利用其病原体蛋白感染宿主植物,从而对经济上重要的谷类作物造成毁灭性损失。分泌的病原体蛋白被称为效应子,尽管越来越多的证据表明并非所有效应子都具有这些特征,但迄今为止,这些效应子是通过从小的、富含半胱氨酸的分泌蛋白中选择来鉴定的。

结果

我们利用已测序真菌基因组的可用性,并提出了一种通过比较隐藏 Markov 模型分析和无监督蛋白聚类来寻找查询基因组中潜在病原体蛋白和分泌效应子的无偏方法。我们的方法返回了 Stagonospora nodorum 和 Fusarium oxysporum 中的实验验证的真菌效应子,以及大麦白粉病病原体的 N 端 Y/F/WxC-基序。该方法应用于谷类病原体 Fusarium graminearum,揭示了一种分泌型膦酸胆碱磷酸酶,它是半活体和坏死性谷类病原体的特征,与细菌植物病原体共享一个古老的选择过程。发现三个 F. graminearum 蛋白簇具有丰富的分泌信号。其中一个假定的效应子簇包含在 N 端具有 [SG]-P-C-[KR]-P 序列基序的蛋白质,并表现出通常与真菌效应子不相关的特征。该基序在分泌致病性 Fusarium 蛋白中保守,是功能测试的候选者。

结论

我们的流水线成功地揭示了真菌病原体的保守模式、假定的效应子和基序,而现有方法将效应子鉴定为小的、分泌的、富含半胱氨酸的肽,可能会忽略这些模式、假定的效应子和基序。它可以应用于任何致病蛋白质组数据,如植物和其他生物体的微生物病原体数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/827b/3914424/6036c716321c/1471-2164-14-807-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验