Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain.
Tissue Eng Part A. 2013 Feb;19(3-4):448-57. doi: 10.1089/ten.TEA.2012.0188. Epub 2012 Oct 24.
Tendons and cartilage are specialized forms of connective tissues originated from common progenitor cells. Initial stages of differentiation of these tissues are characterized by the formation of cell aggregates, which share many molecular markers. Once differentiated, these cells retain considerable plasticity, and chondral metaplasia of tendon and fibrous connective tissues and eventual ossification often accompany degenerative diseases in the adult musculoskeletal system. While this fact is of great relevance for regenerative medicine and aging biology, its molecular basis remains to be elucidated. Gene expression analysis in several physiological and experimental paradigms suggests that differentiation of tendon and cartilage is regulated by a balance in the expression of chondrogenic versus tenogenic genes in the connective tissue cell precursors. Transforming growth factor β (TGFβ) may function both as a profibrogenic or as a prochondrogenic factor for embryonic limb mesoderm and mesenchymal stem cell cultures, but mice that are null for TGFβ 2 and 3 lack tendons. Here, we identify βig-h3 as a factor downstream TGFβ signaling regulated by Smad 2 and 3, which is highly expressed in the differentiating tendons and joint capsules. Furthermore, gain- and loss-of-function experiments using limb mesoderm micromass cultures show that βig-h3 downregulates the expression of cartilage master genes, including Sox9, type II collagen, and Hif-1α. Positive regulation of Sox9 and type II Collagen observed in micromass cultures grown under hypoxic conditions is prevented by exogenous administration of βIG-H3, and the antichondrogenic influence of βIG-H3 is lost after Hif-1α silencing with shRNA. Collectively, our findings indicate that βig-h3 promotes the fibrogenic influence of TGFβ signaling, neutralizing the prochondrogenic influence of the hypoxic-inducible factor 1 activated by the hypoxic microenvironment characteristic of limb mesenchymal aggregates.
肌腱和软骨是起源于共同祖细胞的特殊形式的结缔组织。这些组织的分化初始阶段的特征是细胞聚集的形成,这些细胞聚集共享许多分子标记物。一旦分化,这些细胞保持相当大的可塑性,并且肌腱和纤维结缔组织的软骨化生以及最终的骨化通常伴随着成人肌肉骨骼系统的退行性疾病。虽然这一事实对于再生医学和衰老生物学具有重要意义,但它的分子基础仍有待阐明。在几种生理和实验范例中的基因表达分析表明,肌腱和软骨的分化受结缔组织细胞前体中软骨形成基因与肌腱形成基因表达平衡的调节。转化生长因子β(TGFβ)在胚胎肢中胚层和间充质干细胞培养物中可能既作为成纤维细胞因子又作为成软骨细胞因子起作用,但 TGFβ2 和 3 缺失的小鼠缺乏肌腱。在这里,我们确定βig-h3 是一种受 Smad 2 和 3 调节的 TGFβ信号下游因子,在分化的肌腱和关节囊中高度表达。此外,使用肢中胚层微团培养物进行的增益和损失功能实验表明,βig-h3 下调软骨主基因的表达,包括 Sox9、II 型胶原和 Hif-1α。在缺氧条件下生长的微团培养物中观察到的 Sox9 和 II 型胶原的阳性调节被外源性βIG-H3 给药所阻止,并且在 Hif-1α 沉默后,βIG-H3 的抗软骨作用丧失。总的来说,我们的研究结果表明,βig-h3 促进了 TGFβ 信号的成纤维细胞影响,中和了由缺氧诱导因子 1 激活的缺氧诱导的微环境特征所引起的肢间充质聚集的成软骨影响。