Suppr超能文献

一项回顾性研究:利用大肠杆菌作为载体来研究磷脂的合成与功能。

A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function.

作者信息

Dowhan William

机构信息

Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.

出版信息

Biochim Biophys Acta. 2013 Mar;1831(3):471-94. doi: 10.1016/j.bbalip.2012.08.007. Epub 2012 Aug 14.

Abstract

Although the study of individual phospholipids and their synthesis began in the 1920s first in plants and then mammals, it was not until the early 1960s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960s. In 1970s and 1980s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

摘要

尽管对单个磷脂及其合成的研究始于20世纪20年代,最初是在植物中,然后是在哺乳动物中,但直到20世纪60年代初,尤金·肯尼迪利用大肠杆菌才开始了对细菌磷脂代谢的研究。基于对哺乳动物组织研究已有的信息基础,到20世纪60年代末,大肠杆菌中磷脂生物合成的基本蓝图已被绘制出来。在20世纪70年代和80年代,大多数负责磷脂生物合成的酶被纯化,并且许多编码这些酶的基因被鉴定出来。到20世纪90年代末,条件突变体和无效突变体已可获得,同时磷脂生物合成每一步的基因克隆也已具备。在完整的大肠杆菌基因组序列可用之前,这些基因中的大多数已经被测序。已开发出大肠杆菌菌株,在这些菌株中,磷脂组成可以以系统的方式改变,同时保持细胞活力。至今,无效突变体、磷脂代谢被人工调控的菌株以及合成大肠杆菌中不存在的外源脂质的菌株,都被用于确定单个磷脂的特定作用。本综述将追溯那些使大肠杆菌成为研究磷脂合成和功能机制的优秀模型系统的研究成果,这些机制广泛适用于其他原核和真核系统。本文是名为“磷脂与磷脂代谢”的特刊的一部分。

相似文献

1
A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function.
Biochim Biophys Acta. 2013 Mar;1831(3):471-94. doi: 10.1016/j.bbalip.2012.08.007. Epub 2012 Aug 14.
2
Molecular genetics of membrane phospholipid synthesis.
Annu Rev Genet. 1986;20:253-95. doi: 10.1146/annurev.ge.20.120186.001345.
3
Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis.
Eur J Biochem. 1996 Oct 15;241(2):691-6. doi: 10.1111/j.1432-1033.1996.00691.x.
5
Understanding phospholipid function: Why are there so many lipids?
J Biol Chem. 2017 Jun 30;292(26):10755-10766. doi: 10.1074/jbc.X117.794891. Epub 2017 May 10.
7
Metabolic regulations and biological functions of phospholipids in Escherichia coli.
Prog Lipid Res. 1992;31(3):245-99. doi: 10.1016/0163-7827(92)90010-g.
9
Archaeal phospholipid biosynthetic pathway reconstructed in Escherichia coli.
Archaea. 2012;2012:438931. doi: 10.1155/2012/438931. Epub 2012 May 9.

引用本文的文献

1
Genetic determinants of adaptation and drug efficacy during stationary phase growth.
Microbiol Spectr. 2025 Sep 2;13(9):e0109625. doi: 10.1128/spectrum.01096-25. Epub 2025 Aug 12.
2
Recent advances in understanding of enterobacterial common antigen synthesis and regulation.
Open Biol. 2025 Jan;15(7):250055. doi: 10.1098/rsob.250055. Epub 2025 Jul 2.
3
Endogenous formation of phosphatidylhomoserine in Escherichia coli through phosphatidylserine synthase.
J Biol Chem. 2025 May 20;301(7):110255. doi: 10.1016/j.jbc.2025.110255.
4
A tuneable minimal cell membrane reveals that two lipid species suffice for life.
Nat Commun. 2024 Nov 8;15(1):9679. doi: 10.1038/s41467-024-53975-y.
5
Protocells by spontaneous reaction of cysteine with short-chain thioesters.
Nat Chem. 2025 Jan;17(1):148-155. doi: 10.1038/s41557-024-01666-y. Epub 2024 Oct 30.
6
A tuneable minimal cell membrane reveals that two lipid species suffice for life.
bioRxiv. 2024 Oct 18:2023.10.24.563757. doi: 10.1101/2023.10.24.563757.
7
Biosynthesis of glucosaminyl phosphatidylglycerol in .
bioRxiv. 2024 Oct 11:2024.10.10.617631. doi: 10.1101/2024.10.10.617631.
8
Design of Ultrasound-Driven Charge Interference Therapy for Wound Infection.
Nano Lett. 2024 Jul 3;24(26):7868-7878. doi: 10.1021/acs.nanolett.4c00930. Epub 2024 Jun 24.
10
Transient Complexity of Lipidome Is Explained by Fatty Acyl Synthesis and Cyclopropanation.
Metabolites. 2022 Aug 24;12(9):784. doi: 10.3390/metabo12090784.

本文引用的文献

1
Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16504-9. doi: 10.1073/pnas.1212797109. Epub 2012 Sep 17.
2
Phosphatidic acid synthesis in bacteria.
Biochim Biophys Acta. 2013 Mar;1831(3):495-502. doi: 10.1016/j.bbalip.2012.08.018. Epub 2012 Aug 30.
3
Lipid-dependent generation of dual topology for a membrane protein.
J Biol Chem. 2012 Nov 2;287(45):37939-48. doi: 10.1074/jbc.M112.404103. Epub 2012 Sep 10.
5
An essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):E954-61. doi: 10.1073/pnas.1121528109. Epub 2012 Mar 26.
6
Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.
Genetics. 2012 Feb;190(2):317-49. doi: 10.1534/genetics.111.130286.
7
Exploring the relationship between lipoprotein mislocalization and activation of the Rcs signal transduction system in Escherichia coli.
Microbiology (Reading). 2012 May;158(Pt 5):1238-1248. doi: 10.1099/mic.0.056945-0. Epub 2012 Feb 9.
8
The Raetz pathway for lipid A biosynthesis: Christian Rudolf Hubert Raetz, MD PhD, 1946–2011.
J Lipid Res. 2011 Nov;52(11):1857-1860. doi: 10.1194/jlr.e020701.
9
Chris Raetz, scientist and enduring friend.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17255-6. doi: 10.1073/pnas.1114405108. Epub 2011 Oct 3.
10
Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis.
Cell Metab. 2011 Jun 8;13(6):690-700. doi: 10.1016/j.cmet.2011.04.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验