Suppr超能文献

了解磷脂的功能:为何存在如此多的脂质?

Understanding phospholipid function: Why are there so many lipids?

作者信息

Dowhan William

机构信息

From the Department of Biochemistry and Molecular Biology, the University of Texas Health Sciences Center, McGovern Medical School, Houston, Texas 77030

出版信息

J Biol Chem. 2017 Jun 30;292(26):10755-10766. doi: 10.1074/jbc.X117.794891. Epub 2017 May 10.

Abstract

In the 1970s, phospholipids were still considered mere building blocks of the membrane lipid bilayer, but the subsequent realization that phospholipids could also serve as second messengers brought new interest to the field. My own passion for the unique amphipathic properties of lipids led me to seek other, non-signaling functions for phospholipids, particularly in their interactions with membrane proteins. This seemed to be the last frontier in protein chemistry and enzymology to be conquered. I was fortunate to find my way to Eugene Kennedy's laboratory, where both membrane proteins and phospholipids were the foci of study, thus providing a jumping-off point for advancing our fundamental understanding of lipid synthesis, membrane protein biosynthesis, phospholipid and membrane protein trafficking, and the cellular roles of phospholipids. After purifying and characterizing enzymes of phospholipid biosynthesis in and cloning of several of the genes encoding these enzymes in and , I was in a position to alter phospholipid composition in a systematic manner during the cell cycle in these microorganisms. My group was able to establish, contrary to common assumption (derived from the fact that membrane proteins retain activity in detergent extracts) that phospholipid environment is a strong determining factor in the function of membrane proteins. We showed that molecular genetic alterations in membrane lipid composition result in many phenotypes, and uncovered direct lipid-protein interactions that govern dynamic structural and functional properties of membrane proteins. Here I present my personal "reflections" on how our understanding of phospholipid functions has evolved.

摘要

在20世纪70年代,磷脂仍仅仅被视为膜脂双层的构建单元,但随后人们认识到磷脂也可作为第二信使,这给该领域带来了新的研究兴趣。我本人对脂质独特的两亲性特性充满热情,促使我探寻磷脂的其他非信号功能,特别是它们与膜蛋白的相互作用。这似乎是蛋白质化学和酶学中最后一个有待攻克的前沿领域。我很幸运地进入了尤金·肯尼迪的实验室,在那里膜蛋白和磷脂都是研究的重点,从而为推进我们对脂质合成、膜蛋白生物合成、磷脂和膜蛋白运输以及磷脂的细胞作用的基本理解提供了一个起点。在纯化并鉴定了磷脂生物合成的酶之后,又于[具体年份1]和[具体年份2]克隆了几个编码这些酶的基因,之后我便能够在这些微生物的细胞周期中以系统的方式改变磷脂组成。与常见假设(该假设源于膜蛋白在去污剂提取物中仍保留活性这一事实)相反,我的团队能够确定磷脂环境是膜蛋白功能的一个重要决定因素。我们表明,膜脂组成的分子遗传学改变会导致多种表型,并揭示了控制膜蛋白动态结构和功能特性的直接脂 - 蛋白相互作用。在此,我将阐述我个人对我们对磷脂功能的理解是如何演变的“思考”。

相似文献

1
Understanding phospholipid function: Why are there so many lipids?
J Biol Chem. 2017 Jun 30;292(26):10755-10766. doi: 10.1074/jbc.X117.794891. Epub 2017 May 10.
2
Molecular genetics of membrane phospholipid synthesis.
Annu Rev Genet. 1986;20:253-95. doi: 10.1146/annurev.ge.20.120186.001345.
3
A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function.
Biochim Biophys Acta. 2013 Mar;1831(3):471-94. doi: 10.1016/j.bbalip.2012.08.007. Epub 2012 Aug 14.
4
Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.
J Cell Sci. 2015 Jan 1;128(1):61-9. doi: 10.1242/jcs.153890. Epub 2014 Oct 29.
5
7
Genetic analysis of lipid-protein interactions in Escherichia coli membranes.
Biochim Biophys Acta. 1998 Nov 10;1376(3):455-66. doi: 10.1016/s0304-4157(98)00013-6.
8
Phospholipid subcellular localization and dynamics.
J Biol Chem. 2018 Apr 27;293(17):6230-6240. doi: 10.1074/jbc.R117.000582. Epub 2018 Mar 27.
9
Phospholipid transfer proteins in microorganisms.
Chem Phys Lipids. 1985 Aug 30;38(1-2):41-50. doi: 10.1016/0009-3084(85)90056-8.
10
Lipid-Assisted Membrane Protein Folding and Topogenesis.
Protein J. 2019 Jun;38(3):274-288. doi: 10.1007/s10930-019-09826-7.

引用本文的文献

1
Transcutaneous intravascular laser irradiation of blood affects plasma metabolites of women.
Sci Rep. 2024 Dec 1;14(1):29839. doi: 10.1038/s41598-024-80169-9.
2
UPLC-ESI-MS/MS strategy to analyze fatty acids composition and lipid profiles of Pacific saury ().
Food Chem X. 2024 Jul 22;23:101682. doi: 10.1016/j.fochx.2024.101682. eCollection 2024 Oct 30.
3
Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies.
Aging Dis. 2024 Apr 7;16(2):1003-1022. doi: 10.14336/AD.2024.0407.
5
Lipid Quality Control and Ferroptosis: From Concept to Mechanism.
Annu Rev Biochem. 2024 Aug;93(1):499-528. doi: 10.1146/annurev-biochem-052521-033527. Epub 2024 Jul 2.
6
Lipid packing in biological membranes governs protein localization and membrane permeability.
Biophys J. 2023 Jul 11;122(13):2727-2743. doi: 10.1016/j.bpj.2023.05.028. Epub 2023 May 29.
7
Liposomes in Cancer Therapy: How Did We Start and Where Are We Now.
Int J Mol Sci. 2023 Apr 1;24(7):6615. doi: 10.3390/ijms24076615.
8
Blood indices of omega-3 and omega-6 polyunsaturated fatty acids are altered in hyperglycemia.
Saudi J Biol Sci. 2023 Mar;30(3):103577. doi: 10.1016/j.sjbs.2023.103577. Epub 2023 Jan 27.

本文引用的文献

1
Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.
J Biol Chem. 2017 Feb 3;292(5):1613-1624. doi: 10.1074/jbc.M116.765719. Epub 2016 Dec 14.
2
Dynamic membrane protein topological switching upon changes in phospholipid environment.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13874-9. doi: 10.1073/pnas.1512994112. Epub 2015 Oct 28.
3
Structure of LacY with an α-substituted galactoside: Connecting the binding site to the protonation site.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9004-9. doi: 10.1073/pnas.1509854112. Epub 2015 Jul 8.
4
The membrane: transertion as an organizing principle in membrane heterogeneity.
Front Microbiol. 2015 Jun 12;6:572. doi: 10.3389/fmicb.2015.00572. eCollection 2015.
5
A chemiosmotic mechanism of symport.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1259-64. doi: 10.1073/pnas.1419325112. Epub 2015 Jan 7.
6
Lipids and topological rules governing membrane protein assembly.
Biochim Biophys Acta. 2014 Aug;1843(8):1475-88. doi: 10.1016/j.bbamcr.2013.12.007. Epub 2013 Dec 14.
7
Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes.
Chem Phys Lipids. 2014 Apr;179:42-8. doi: 10.1016/j.chemphyslip.2013.10.012. Epub 2013 Nov 9.
8
Christian Raetz: scientist and friend extraordinaire.
Annu Rev Biochem. 2013;82:1-24. doi: 10.1146/annurev-biochem-012512-091530. Epub 2013 Mar 7.
9
Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16504-9. doi: 10.1073/pnas.1212797109. Epub 2012 Sep 17.
10
A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function.
Biochim Biophys Acta. 2013 Mar;1831(3):471-94. doi: 10.1016/j.bbalip.2012.08.007. Epub 2012 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验