Suppr超能文献

乳腺癌中的数字图像分析:一种自动化方法的示例及图像压缩的影响。

Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression.

作者信息

López Carlos, Lejeune Marylène, Bosch Ramon, Korzynska Anna, García-Rojo Marcial, Salvadó Maria-Teresa, Alvaro Tomás, Callau Cristina, Roso Albert, Jaén Joaquín

机构信息

Unitat de Suport a la Recerca de la Gerencia Territorial Terres de l'Ebre, IDIAP, Tortosa, Spain.

出版信息

Stud Health Technol Inform. 2012;179:155-71.

Abstract

In the current practice of pathology, the evaluation of immunohistochemical (IHC) markers represents an essential tool. The manual quantification of these markers is still laborious and subjective, and the use of computerized systems for digital image (DI) analysis has not yet resolved the problems of nuclear aggregates (clusters). Furthermore, the volume of DI storage continues to be an important problem in computer-assisted pathology. In the present study we have developed an automated procedure to quantify IHC nuclear markers in DI with a high level of clusters. Furthermore the effects of JPEG compression in the image analysis were evaluated. The results indicated that there was an agreement with the results of both methods (automated vs. manual) in almost 90% of the analyzed images. On the other hand, automated count differences increase as the compression level increase, but only in images with a high number of stained nuclei (>nuclei/image) or with high area cluster (>25μm2). Some corrector factors were developed in order to correct this count differences. In conclusion, the proposed automated procedure is an objective, faster than manual counting and reproducible method that has more than 90% of similarity with manual count. Moreover, the results demonstrate that with correction factors, it is possible to carry out unbiased automated quantifications on IHC nuclear markers in compressed DIs.

摘要

在当前病理学实践中,免疫组织化学(IHC)标志物的评估是一项重要工具。对这些标志物进行手动定量仍然费力且主观,而使用计算机系统进行数字图像(DI)分析尚未解决核聚集物(簇)的问题。此外,DI存储量在计算机辅助病理学中仍然是一个重要问题。在本研究中,我们开发了一种自动化程序,用于对具有大量簇的DI中的IHC核标志物进行定量。此外,还评估了JPEG压缩在图像分析中的影响。结果表明,在几乎90%的分析图像中,两种方法(自动化与手动)的结果一致。另一方面,自动化计数差异随着压缩水平的增加而增加,但仅在具有大量染色细胞核(>细胞核/图像)或高面积簇(>25μm²)的图像中如此。为了校正这种计数差异,开发了一些校正因子。总之,所提出的自动化程序是一种客观、比手动计数更快且可重复的方法,与手动计数的相似度超过90%。此外,结果表明,使用校正因子,可以对压缩DI中的IHC核标志物进行无偏倚的自动化定量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验