Suppr超能文献

对具有不同复杂性的细胞核免疫组化标志物进行自动定量分析。

Automated quantification of nuclear immunohistochemical markers with different complexity.

作者信息

López Carlos, Lejeune Marylène, Salvadó María Teresa, Escrivà Patricia, Bosch Ramón, Pons Lluis E, Alvaro Tomás, Roig Jordi, Cugat Xavier, Baucells Jordi, Jaén Joaquín

机构信息

Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tarragona, Spain.

出版信息

Histochem Cell Biol. 2008 Mar;129(3):379-87. doi: 10.1007/s00418-007-0368-5. Epub 2008 Jan 3.

Abstract

Manual quantification of immunohistochemically stained nuclear markers is still laborious and subjective and the use of computerized systems for digital image analysis have not yet resolved the problems of nuclear clustering. In this study, we designed a new automatic procedure for quantifying various immunohistochemical nuclear markers with variable clustering complexity. This procedure consisted of two combined macros. The first, developed with a commercial software, enabled the analysis of the digital images using color and morphological segmentation including a masking process. All information extracted with this first macro was automatically exported to an Excel datasheet, where a second macro composed of four different algorithms analyzed all the information and calculated the definitive number of positive nuclei for each image. One hundred and eighteen images with different levels of clustering complexity was analyzed and compared with the manual quantification obtained by a trained observer. Statistical analysis indicated a great reliability (intra-class correlation coefficient > 0.950) and no significant differences between the two methods. Bland-Altman plot and Kaplan-Meier curves indicated that the results of both methods were concordant around 90% of analyzed images. In conclusion, this new automated procedure is an objective, faster and reproducible method that has an excellent level of accuracy, even with digital images with a high complexity.

摘要

免疫组织化学染色核标志物的手动定量仍然费力且主观,而使用计算机系统进行数字图像分析尚未解决核聚集的问题。在本研究中,我们设计了一种新的自动程序,用于定量具有不同聚集复杂性的各种免疫组织化学核标志物。该程序由两个组合的宏组成。第一个宏是使用商业软件开发的,它通过包括掩膜过程的颜色和形态分割来分析数字图像。用第一个宏提取的所有信息会自动导出到一个Excel数据表中,在该表中,由四种不同算法组成的第二个宏会分析所有信息并计算每张图像中阳性核的最终数量。我们分析了118张具有不同聚集复杂程度的图像,并将其与训练有素的观察者进行的手动定量结果进行了比较。统计分析表明该方法具有很高的可靠性(组内相关系数>0.950),且两种方法之间无显著差异。Bland-Altman图和Kaplan-Meier曲线表明,两种方法的结果在约90%的分析图像中是一致的。总之,这种新的自动化程序是一种客观、快速且可重复的方法,即使对于具有高复杂性的数字图像,也具有出色的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验