Suppr超能文献

心脏 MRI 反转恢复成像中采用水选择反转脉冲改善脂肪水分离。

Improved fat water separation with water selective inversion pulse for inversion recovery imaging in cardiac MRI.

机构信息

Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.

出版信息

J Magn Reson Imaging. 2013 Feb;37(2):484-90. doi: 10.1002/jmri.23779. Epub 2012 Aug 23.

Abstract

PURPOSE

To develop an improved chemical shift-based water-fat separation sequence using a water-selective inversion pulse for inversion recovery 3D contrast-enhanced cardiac magnetic resonance imaging (MRI).

MATERIALS AND METHODS

In inversion recovery sequences the fat signal is substantially reduced due to the application of a nonselective inversion pulse. Therefore, for simultaneous visualization of water, fat, and myocardial enhancement in inversion recovery-based sequences such as late gadolinium enhancement imaging, two separate scans are used. To overcome this, the nonselective inversion pulse is replaced with a water-selective inversion pulse. Imaging was performed in phantoms, nine healthy subjects, and nine patients with suspected arrhythmogenic right ventricular cardiomyopathy plus one patient for tumor/mass imaging. In patients, images with conventional turbo-spin echo (TSE) with and without fat saturation were acquired prior to contrast injection for fat assessment. Subjective image scores (1 = poor, 4 = excellent) were used for image assessment.

RESULTS

Phantom experiments showed a fat signal-to-noise ratio (SNR) increase between 1.7 to 5.9 times for inversion times of 150 and 300 msec, respectively. The water-selective inversion pulse retains the fat signal in contrast-enhanced cardiac MR, allowing improved visualization of fat in the water-fat separated images of healthy subjects with a score of 3.7 ± 0.6. Patient images acquired with the proposed sequence were scored higher when compared with a TSE sequence (3.5 ± 0.7 vs. 2.2 ± 0.5, P < 0.05).

CONCLUSION

The water-selective inversion pulse retains the fat signal in inversion recovery-based contrast-enhanced cardiac MR, allowing simultaneous visualization of water and fat.

摘要

目的

开发一种基于化学位移的改进水脂分离序列,该序列使用选择性水激发脉冲进行反转恢复 3D 对比增强心脏磁共振成像(MRI)。

材料与方法

在反转恢复序列中,由于应用了非选择性反转脉冲,脂肪信号会大大降低。因此,为了在基于反转恢复的序列(如晚期钆增强成像)中同时观察水、脂肪和心肌增强,需要使用两个单独的扫描。为了克服这一问题,可以用选择性水激发脉冲代替非选择性反转脉冲。在体模、9 名健康志愿者和 9 名疑似致心律失常性右心室心肌病患者(加 1 名肿瘤/肿块成像患者)中进行了成像。在患者中,在注射对比剂之前,使用常规的涡轮自旋回波(TSE)序列进行图像采集,并进行有无脂肪饱和的扫描,用于评估脂肪。使用主观图像评分(1=差,4=优)进行图像评估。

结果

体模实验显示,反转时间为 150ms 和 300ms 时,脂肪信号的信噪比(SNR)分别增加了 1.7 到 5.9 倍。选择性水激发脉冲在对比增强心脏 MRI 中保留了脂肪信号,允许在健康志愿者的水脂分离图像中更好地观察脂肪,评分为 3.7±0.6。与 TSE 序列相比,使用所提出的序列采集的患者图像评分更高(3.5±0.7 与 2.2±0.5,P<0.05)。

结论

选择性水激发脉冲在基于反转恢复的对比增强心脏 MRI 中保留了脂肪信号,允许同时观察水和脂肪。

相似文献

1
Improved fat water separation with water selective inversion pulse for inversion recovery imaging in cardiac MRI.
J Magn Reson Imaging. 2013 Feb;37(2):484-90. doi: 10.1002/jmri.23779. Epub 2012 Aug 23.
3
3D myocardial T mapping using saturation recovery.
J Magn Reson Imaging. 2017 Jul;46(1):218-227. doi: 10.1002/jmri.25575. Epub 2017 Feb 2.
6
Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T.
Acta Radiol. 2017 Nov;58(11):1386-1394. doi: 10.1177/0284185117690424. Epub 2017 Feb 6.
8
Reverse double inversion-recovery: Improving motion robustness of cardiac T -weighted dark-blood turbo spin-echo sequence.
J Magn Reson Imaging. 2018 Jun;47(6):1498-1508. doi: 10.1002/jmri.25886. Epub 2017 Nov 7.
9
MR Neurography of Brachial Plexus at 3.0 T with Robust Fat and Blood Suppression.
Radiology. 2017 May;283(2):538-546. doi: 10.1148/radiol.2016152842. Epub 2016 Dec 22.
10
Application of single shot free-breathing fast imaging employing steady state sequence in cardiac magnetic resonance imaging.
Clin Physiol Funct Imaging. 2015 Mar;35(2):159-66. doi: 10.1111/cpf.12140. Epub 2014 Mar 3.

引用本文的文献

1
A comprehensive evaluation of the left atrium using cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2025 Feb 5;27(1):101852. doi: 10.1016/j.jocmr.2025.101852.
2
Recent advances in PET-MRI for cardiac sarcoidosis.
Front Nucl Med. 2022 Dec 19;2:1032444. doi: 10.3389/fnume.2022.1032444. eCollection 2022.
3
Simultaneous Assessment of Left Atrial Fibrosis and Epicardial Adipose Tissue Using 3D Late Gadolinium Enhanced Dixon MRI.
J Magn Reson Imaging. 2022 Nov;56(5):1393-1403. doi: 10.1002/jmri.28100. Epub 2022 Feb 7.
4
3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI.
Eur Radiol. 2021 Jun;31(6):3951-3961. doi: 10.1007/s00330-020-07517-x. Epub 2020 Dec 2.
6
Towards coronary plaque imaging using simultaneous PET-MR: a simulation study.
Phys Med Biol. 2014 Mar 7;59(5):1203-22. doi: 10.1088/0031-9155/59/5/1203. Epub 2014 Feb 20.

本文引用的文献

3
Contrast-enhanced whole-heart coronary MRI with bolus infusion of gadobenate dimeglumine at 1.5 T.
Magn Reson Med. 2011 Feb;65(2):392-8. doi: 10.1002/mrm.22706. Epub 2010 Nov 30.
4
Epicardial fat: an additional measurement for subclinical atherosclerosis and cardiovascular risk stratification?
J Am Soc Echocardiogr. 2011 Mar;24(3):339-45. doi: 10.1016/j.echo.2010.11.008. Epub 2010 Dec 24.
5
Effect of epicardial fat on electroanatomical mapping and epicardial catheter ablation.
J Am Coll Cardiol. 2010 Oct 12;56(16):1320-7. doi: 10.1016/j.jacc.2010.04.054.
6
Dual-echo Dixon imaging with flexible choice of echo times.
Magn Reson Med. 2011 Jan;65(1):96-107. doi: 10.1002/mrm.22578.
7
Pericardial fat is independently associated with human atrial fibrillation.
J Am Coll Cardiol. 2010 Aug 31;56(10):784-8. doi: 10.1016/j.jacc.2010.03.071.
8
Myocardial Fat Imaging.
Curr Cardiovasc Imaging Rep. 2010 Apr;3(2):83-91. doi: 10.1007/s12410-010-9012-1. Epub 2010 Mar 11.
10
Myocardial fat deposition after left ventricular myocardial infarction: assessment by using MR water-fat separation imaging.
Radiology. 2009 Oct;253(1):65-73. doi: 10.1148/radiol.2532082290. Epub 2009 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验