Suppr超能文献

开发和验证预测医学中随机临床试验的连续基因组特征。

Developing and validating continuous genomic signatures in randomized clinical trials for predictive medicine.

机构信息

Department of Data Science, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan.

出版信息

Clin Cancer Res. 2012 Nov 1;18(21):6065-73. doi: 10.1158/1078-0432.CCR-12-1206. Epub 2012 Aug 27.

Abstract

PURPOSE

It is highly challenging to develop reliable diagnostic tests to predict patients' responsiveness to anticancer treatments on clinical endpoints before commencing the definitive phase III randomized trial. Development and validation of genomic signatures in the randomized trial can be a promising solution. Such signatures are required to predict quantitatively the underlying heterogeneity in the magnitude of treatment effects.

EXPERIMENTAL DESIGN

We propose a framework for developing and validating genomic signatures in randomized trials. Codevelopment of predictive and prognostic signatures can allow prediction of patient-level survival curves as basic diagnostic tools for treating individual patients.

RESULTS

We applied our framework to gene-expression microarray data from a large-scale randomized trial to determine whether the addition of thalidomide improves survival for patients with multiple myeloma. The results indicated that approximately half of the patients were responsive to thalidomide, and the average improvement in survival for the responsive patients was statistically significant. Cross-validated patient-level survival curves were developed to predict survival distributions of individual future patients as a function of whether or not they are treated with thalidomide and with regard to their baseline prognostic and predictive signature indices.

CONCLUSION

The proposed framework represents an important step toward reliable predictive medicine. It provides an internally validated mechanism for using randomized clinical trials to assess treatment efficacy for a patient population in a manner that takes into consideration the heterogeneity in patients' responsiveness to treatment. It also provides cross-validated patient-level survival curves that can be used for selecting treatments for future patients.

摘要

目的

在开始进行确定性 III 期随机试验之前,开发能够可靠地预测患者对癌症治疗反应的临床终点诊断测试极具挑战性。在随机试验中开发和验证基因组特征是一种很有前途的解决方案。此类特征需要定量预测治疗效果的潜在异质性。

实验设计

我们提出了一种在随机试验中开发和验证基因组特征的框架。预测和预后特征的共同开发可以允许预测患者水平的生存曲线,作为治疗个别患者的基本诊断工具。

结果

我们将我们的框架应用于来自大规模随机试验的基因表达微阵列数据,以确定添加沙利度胺是否可以改善多发性骨髓瘤患者的生存。结果表明,大约一半的患者对沙利度胺有反应,而有反应的患者的平均生存改善具有统计学意义。开发了交叉验证的患者水平生存曲线,以预测单个未来患者的生存分布,作为他们是否接受沙利度胺治疗以及他们的基线预后和预测特征指数的函数。

结论

所提出的框架代表了可靠的预测医学的重要一步。它提供了一种内部验证的机制,用于以考虑患者对治疗反应的异质性的方式,使用随机临床试验来评估患者人群的治疗效果。它还提供了交叉验证的患者水平生存曲线,可用于为未来的患者选择治疗方法。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Clinical trials for predictive medicine.预测医学的临床试验。
Stat Med. 2012 Nov 10;31(25):3031-40. doi: 10.1002/sim.5401. Epub 2012 Jun 19.

引用本文的文献

本文引用的文献

1
Measuring the performance of markers for guiding treatment decisions.测量指导治疗决策标志物的性能。
Ann Intern Med. 2011 Feb 15;154(4):253-9. doi: 10.7326/0003-4819-154-4-201102150-00006.
3
The cross-validated adaptive signature design.交叉验证自适应特征设计。
Clin Cancer Res. 2010 Jan 15;16(2):691-8. doi: 10.1158/1078-0432.CCR-09-1357. Epub 2010 Jan 12.
5
Survival analysis with high-dimensional covariates.高维协变量的生存分析。
Stat Methods Med Res. 2010 Feb;19(1):29-51. doi: 10.1177/0962280209105024. Epub 2009 Aug 4.
6
Randomized phase III clinical trial designs for targeted agents.靶向药物的随机III期临床试验设计
Clin Cancer Res. 2008 Jul 15;14(14):4358-67. doi: 10.1158/1078-0432.CCR-08-0288.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验