Berman-Gund Laboratory for the Study of Retinal Degenerations, Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America.
PLoS One. 2012;7(8):e43251. doi: 10.1371/journal.pone.0043251. Epub 2012 Aug 21.
Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4(th) and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd) exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.
视网膜色素变性 1(RP1)基因突变是常染色体显性遗传视网膜色素变性(adRP)的一个常见原因,在少数家族中也发现这些突变可导致常染色体隐性遗传 RP(arRP)。迄今为止已鉴定出的 33 个显性突变和 6 个隐性 RP1 突变都是无义或移码突变,几乎完全(39 个中的 38 个)位于 RP1 的第 4(四)个和最后一个外显子。为了更好地了解 RP1 疾病的潜在发病机制并帮助开发治疗策略,我们使用基因靶向和转基因小鼠进行了一系列人类遗传和动物研究。在这里,我们报告了一位隐性 RP1 疾病患者的 RP1 第 3(三)个外显子中的移码突变(c.686delC;p.P229QfsX35),导致纯合状态下的 RP,而杂合子携带者不受影响,证实了杂合不足不是 RP1 疾病的致病机制。然后,我们生成了具有外显子 4 中无义 Q662X 突变的 Rp1 敲入小鼠,以及携带野生型 BAC Rp1 转基因的 Rp1 转基因小鼠。Rp1-Q662X 等位基因产生截断的 Rp1 蛋白,纯合 Rp1-Q662X 小鼠经历进行性光感受器变性,其特征为光感受器外节的紊乱。这种表型可以通过从 BAC 转基因表达正常量的 Rp1 蛋白而得到预防,而无需去除突变的 Rp1-Q662X 蛋白。在其他 BAC Rp1 转基因系中过表达 Rp1 蛋白会导致视网膜变性。这些发现表明,截断的 Rp1-Q662X 蛋白不会产生毒性获得性功能效应。这些结果还表明,原则上基因扩增疗法可能对隐性和显性 RP1 患者都有益,但治疗中所需的 Rp1 蛋白水平必须仔细控制。