Suppr超能文献

肌肉蛋白磷酸化的结构动力学。

Structural dynamics of muscle protein phosphorylation.

机构信息

Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Muscle Res Cell Motil. 2012 Dec;33(6):419-29. doi: 10.1007/s10974-012-9317-6. Epub 2012 Aug 29.

Abstract

We have used site-directed spectroscopic probes to detect structural changes, motions, and interactions due to phosphorylation of proteins involved in the regulation of muscle contraction and relaxation. Protein crystal structures provide static snapshots that provide clues to the conformations that are sampled dynamically by proteins in the cellular environment. Our site-directed spectroscopic experiments, combined with computational simulations, extend these studies into functional assemblies in solution, and reveal details of protein regions that are too dynamic or disordered for crystallographic approaches. Here, we discuss phosphorylation-mediated structural transitions in the smooth muscle myosin regulatory light chain, the striated muscle accessory protein myosin binding protein-C, and the cardiac membrane Ca(2+) pump modulator phospholamban. In each of these systems, phosphorylation near the N terminus of the regulatory protein relieves an inhibitory interaction between the phosphoprotein and its regulatory target. Several additional unifying themes emerge from our studies: (a) The effect of phosphorylation is not to change the affinity of the phosphoprotein for its regulated binding partner, but to change the structure of the bound complex without dissociation. (b) Phosphorylation induces transitions between order and dynamic disorder. (c) Structural states are only loosely coupled to phosphorylation; i.e., complete phosphorylation induces dramatic functional effects with only a partial shift in the equilibrium between ordered and disordered structural states. These studies, which offer atomic-resolution insight into the structural and functional dynamics of these phosphoproteins, were inspired in part by the ground-breaking work in this field by Michael and Kate Barany.

摘要

我们使用定点光谱探针来检测参与肌肉收缩和松弛调节的蛋白质磷酸化引起的结构变化、运动和相互作用。蛋白质晶体结构提供了静态快照,为细胞环境中蛋白质动态采样的构象提供了线索。我们的定点光谱实验,结合计算模拟,将这些研究扩展到溶液中的功能组装中,并揭示了对于晶体学方法来说太动态或太无序的蛋白质区域的细节。在这里,我们讨论了平滑肌肌球蛋白调节轻链、横纹肌辅助蛋白肌球蛋白结合蛋白-C 和心脏膜 Ca(2+)泵调节剂磷蛋白的磷酸化介导的结构转变。在这些系统中的每一个中,靠近调节蛋白 N 端的磷酸化减轻了磷酸蛋白与其调节靶标的抑制性相互作用。我们的研究还出现了几个额外的统一主题:(a) 磷酸化的作用不是改变磷酸蛋白与其调节结合伙伴的亲和力,而是在不解离的情况下改变结合复合物的结构。(b) 磷酸化诱导有序和动态无序之间的转变。(c) 结构状态与磷酸化的耦合程度很弱;即,完全磷酸化仅引起功能效应的剧烈变化,而有序和无序结构状态之间的平衡仅发生部分转移。这些研究为这些磷酸蛋白的结构和功能动力学提供了原子分辨率的见解,部分灵感来自 Michael 和 Kate Barany 在该领域的开创性工作。

相似文献

1
Structural dynamics of muscle protein phosphorylation.肌肉蛋白磷酸化的结构动力学。
J Muscle Res Cell Motil. 2012 Dec;33(6):419-29. doi: 10.1007/s10974-012-9317-6. Epub 2012 Aug 29.

引用本文的文献

4
Troponin structure and function: a view of recent progress.肌钙蛋白结构与功能:最新进展一览。
J Muscle Res Cell Motil. 2020 Mar;41(1):71-89. doi: 10.1007/s10974-019-09513-1. Epub 2019 Apr 27.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验