Institute of Chemistry, Center of Nanoscience and Nanotechnology, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Adv Mater. 2013 Jan 18;25(3):349-77. doi: 10.1002/adma.201201772. Epub 2012 Aug 30.
Light-triggered biological processes provide the principles for the development of man-made optobioelectronic systems. This Review addresses three recently developed topics in the area of optobioelectronics, while addressing the potential applications of these systems. The topics discussed include: (i) the reversible photoswitching of the bioelectrocatalytic functions of redox proteins by the modification of proteins with photoisomerizable units or by the integration of proteins with photoisomerizable environments; (ii) the integration of natural photosynthetic reaction centers with electrodes and the construction of photobioelectrochemical cells and photobiofuel cells; and (iii) the synthesis of biomolecule/semiconductor quantum dots hybrid systems and their immobilization on electrodes to yield photobioelectrochemical and photobiofuel cell elements. The fundamental challenge in the tailoring of optobioelectronic systems is the development of means to electrically contact photoactive biomolecular assemblies with the electrode supports. Different methods to establish electrical communication between the photoactive biomolecular assemblies and electrodes are discussed. These include the nanoscale engineering of the biomolecular nanostructures on surfaces, the development of photoactive molecular wires and the coupling of photoinduced electron transfer reactions with the redox functions of proteins. The different possible applications of optobioelectronic systems are discussed, including their use as photosensors, the design of biosensors, and the construction of solar energy conversion and storage systems.
光触发的生物过程为人工光学生物电子系统的发展提供了原理。本综述针对光学生物电子学领域的三个最新研究课题,同时探讨了这些系统的潜在应用。讨论的主题包括:(i)通过用光可逆异构单元修饰蛋白质或通过将蛋白质与光致变色环境整合,可逆地改变氧化还原蛋白的生物电化学功能的光致切换;(ii)将天然光合反应中心与电极集成,并构建光电化学电池和光电燃料电池;以及(iii)生物分子/半导体量子点混合系统的合成及其在电极上的固定化,以获得光电化学和光电燃料电池元件。定制光学生物电子系统的基本挑战是开发将光电活性生物分子组件与电极支撑物电接触的方法。讨论了在光电活性生物分子组件和电极之间建立电通信的不同方法。这些方法包括表面上的生物分子纳米结构的纳米级工程、光活性分子线的开发以及将光诱导电子转移反应与蛋白质的氧化还原功能偶联。讨论了光学生物电子系统的不同可能应用,包括将其用作光传感器、设计生物传感器以及构建太阳能转换和存储系统。