Suppr超能文献

信号通路在爪蟾幼体脊髓和肌肉再生中作用的转基因分析。

Transgenic analysis of signaling pathways required for Xenopus tadpole spinal cord and muscle regeneration.

机构信息

Stem Cell Institute, University of Minnesota, MTRF, 2001 6th Street SE, Minneapolis, Minnesota 55455, USA.

出版信息

Anat Rec (Hoboken). 2012 Oct;295(10):1532-40. doi: 10.1002/ar.22437. Epub 2012 Aug 29.

Abstract

The Xenopus tadpole has the capacity fully to regenerate its tail after amputation. Previously, we have established that this regeneration process requires the operation of several signaling pathways including the bone morphogenic protein, Wnt, and Fgf pathways. Here, we have addressed the signaling requirements for spinal cord and muscle regeneration in a tissue-specific manner. Two methods were used namely grafts of transgenic spinal cord to a wild type host, and the use of the Tet-on conditional transgenic system to express inhibitors in the individual tissues. For the grafting experiments, the tail was amputated through the graft, which contained a temperature inducible inhibitor of the Wnt-β-catenin pathway. For the Tet-on experiments, treatment with doxycycline was used to induce cell autonomous inhibitors of the Wnt-β-catenin or the Fgf pathway in either spinal cord or muscle. The results show that both spinal cord and muscle regeneration depend on both the Wnt-β-catenin and the Fgf pathways. This experimental design also enables us to observe the effect of inhibition of regeneration of one tissue on the regeneration of the others. Regardless of the method of inhibition, we find that reduction of spinal cord regeneration reduces regeneration of other parts of the tail, including the myotomal muscles. In contrast, reduction of muscle regeneration has no effect on the regeneration of the spinal cord. In common with other regeneration systems, this indicates that soluble factors from the spinal cord are needed to promote the regeneration of the other tissues in the tail.

摘要

非洲爪蟾的幼体在尾部被截断后有能力完全再生。在此之前,我们已经证实这个再生过程需要几种信号通路的运作,包括骨形态发生蛋白、Wnt 和 Fgf 通路。在这里,我们以组织特异性的方式解决了脊髓和肌肉再生的信号要求。我们使用了两种方法,即转基因脊髓移植到野生型宿主,以及使用 Tet-on 条件性转基因系统在个别组织中表达抑制剂。对于移植实验,通过包含温度诱导的 Wnt-β-catenin 通路抑制剂的移植物截断尾部。对于 Tet-on 实验,使用强力霉素处理以诱导 Wnt-β-catenin 或 Fgf 通路的细胞自主抑制剂在脊髓或肌肉中表达。结果表明,脊髓和肌肉的再生都依赖于 Wnt-β-catenin 和 Fgf 通路。这种实验设计还使我们能够观察到抑制一种组织的再生对其他组织再生的影响。无论采用何种抑制方法,我们发现脊髓再生的减少都会减少尾部其他部分的再生,包括肌节肌肉。相比之下,肌肉再生的减少对脊髓的再生没有影响。与其他再生系统一样,这表明来自脊髓的可溶性因子对于促进尾部其他组织的再生是必要的。

相似文献

引用本文的文献

3
Unique advantages of zebrafish larvae as a model for spinal cord regeneration.斑马鱼幼体作为脊髓再生模型的独特优势。
Front Mol Neurosci. 2022 Sep 7;15:983336. doi: 10.3389/fnmol.2022.983336. eCollection 2022.
5
Bacterial lipopolysaccharides can initiate regeneration of the tadpole tail.细菌脂多糖可以启动蝌蚪尾巴的再生。
iScience. 2021 Oct 14;24(11):103281. doi: 10.1016/j.isci.2021.103281. eCollection 2021 Nov 19.

本文引用的文献

1
Mesoderm induction in the future tail region of Xenopus.非洲爪蟾未来尾部区域的中胚层诱导
Rouxs Arch Dev Biol. 1988 Dec;197(7):441-446. doi: 10.1007/BF00398996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验