Suppr超能文献

一种基于自收缩映射神经网络和图论定义散发性肌萎缩侧索硬化症中赋予风险或保护作用的基因/单核苷酸多态性的新型数学方法。

A Novel Mathematical Approach to Define the Genes/SNPs Conferring Risk or Protection in Sporadic Amyotrophic Lateral Sclerosis Based on Auto Contractive Map Neural Networks and Graph Theory.

作者信息

Buscema Massimo, Penco Silvana, Grossi Enzo

机构信息

Semeion Research Center, Via Sersale 117, 00128 Rome, Italy.

出版信息

Neurol Res Int. 2012;2012:478560. doi: 10.1155/2012/478560. Epub 2012 Aug 9.

Abstract

Background. Complex diseases like amyotrophic lateral sclerosis (ALS) implicate phenotypic and genetic heterogeneity. Therefore, multiple genetic traits may show differential association with the disease. The Auto Contractive Map (AutoCM), belonging to the Artificial Neural Network (ANN) architecture, "spatializes" the correlation among variables by constructing a suitable embedding space where a visually transparent and cognitively natural notion such as "closeness" among variables reflects accurately their associations. Results. In this pilot case-control study single nucleotide polymorphism (SNP) in several genes has been evaluated with a novel data mining approach based on an AutoCM. We have divided the ALS dataset into two dataset: Cases and Control dataset; we have applied to each one, independently, the AutoCM algorithm. Six genetic variants were identified which differently contributed to the complexity of the system: three of the above genes/SNPs represent protective factors, APOA4, NOS3, and LPL, since their contribution to the whole complexity resulted to be as high as 0.17. On the other hand ADRB3, LIPC, and MMP3, whose hub relevancies contribution resulted to be as high as 0.13, seem to represent susceptibility factors. Conclusion. The biological information available on these six polymorphisms is consistent with possible pathogenetic pathways related to ALS.

摘要

背景。像肌萎缩侧索硬化症(ALS)这样的复杂疾病涉及表型和遗传异质性。因此,多种遗传特征可能与该疾病呈现不同的关联。自动收缩映射(AutoCM)属于人工神经网络(ANN)架构,通过构建一个合适的嵌入空间来“空间化”变量之间的相关性,在这个空间中,诸如变量之间“接近度”这样视觉上透明且认知上自然的概念能准确反映它们之间的关联。结果。在这项初步的病例对照研究中,使用了基于AutoCM的新型数据挖掘方法对多个基因中的单核苷酸多态性(SNP)进行了评估。我们将ALS数据集分为两个数据集:病例数据集和对照数据集;我们分别独立地对每个数据集应用了AutoCM算法。鉴定出六个对系统复杂性有不同贡献的基因变异:上述三个基因/SNP代表保护因素,即载脂蛋白A4(APOA4)、一氧化氮合酶3(NOS3)和脂蛋白脂肪酶(LPL),因为它们对整体复杂性的贡献高达0.17。另一方面,β3肾上腺素能受体(ADRB3)、肝脂酶(LIPC)和基质金属蛋白酶3(MMP3),其中心相关性贡献高达0.13,似乎代表易感性因素。结论。关于这六种多态性的生物学信息与ALS可能的致病途径一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27b4/3425858/5e43fdf525b1/NRI2012-478560.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验