Suppr超能文献

炭疽杆菌噬菌体的内溶素以高亲和力和选择性识别营养细胞细胞壁多糖的独特碳水化合物表位。

Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity.

机构信息

Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA

出版信息

J Am Chem Soc. 2012 Sep 19;134(37):15556-62. doi: 10.1021/ja3069962. Epub 2012 Sep 11.

Abstract

Bacteriophages express endolysins which are the enzymes that hydrolyze peptidoglycan resulting in cell lysis and release of bacteriophages. Endolysins have acquired stringent substrate specificities, which have been attributed to cell wall binding domains (CBD). Although it has been realized that CBDs of bacteriophages that infect Gram-positive bacteria target cell wall carbohydrate structures, molecular mechanisms that confer selectivity are not understood. A range of oligosaccharides, derived from the secondary cell wall polysaccharides of Bacillus anthracis, has been chemically synthesized. The compounds contain an α-d-GlcNAc-(1→4)-β-d-ManNAc-(1→4)-β-d-GlcNAc backbone that is modified by various patterns of α-d-Gal and β-d-Gal branching points. The library of compounds could readily be prepared by employing a core trisaccharide modified by the orthogonal protecting groups N(α)-9-fluorenylmethyloxycarbonate (Fmoc), 2-methylnaphthyl ether (Nap), levulinoyl ester (Lev) and dimethylthexylsilyl ether (TDS) at key branching points. Dissociation constants for the binding the cell wall binding domains of the endolysins PlyL and PlyG were determined by surface plasmon resonance (SPR). It was found that the pattern of galactosylation greatly influenced binding affinities, and in particular a compound having a galactosyl moiety at C-4 of the nonreducing GlcNAc moiety bound in the low micromolar range. It is known that secondary cell wall polysaccharides of various bacilli may have both common and variable structural features and in particular differences in the pattern of galactosylation have been noted. Therefore, it is proposed that specificity of endolysins for specific bacilli is achieved by selective binding to a uniquely galactosylated core structure.

摘要

噬菌体表达内溶素,内溶素是水解肽聚糖的酶,导致细胞裂解和噬菌体释放。内溶素获得了严格的底物特异性,这归因于细胞壁结合结构域 (CBD)。尽管已经意识到感染革兰氏阳性菌的噬菌体的 CBD 靶向细胞壁碳水化合物结构,但赋予选择性的分子机制尚不清楚。已经通过化学合成获得了一系列源自炭疽杆菌次生细胞壁多糖的寡糖。这些化合物含有一个 α-d-GlcNAc-(1→4)-β-d-ManNAc-(1→4)-β-d-GlcNAc 骨架,通过各种 α-d-Gal 和 β-d-Gal 分支点的模式进行修饰。该化合物库可以通过采用核心三糖进行简便制备,该核心三糖通过正交保护基 N(α)-9-芴甲氧羰基 (Fmoc)、2-甲基萘基醚 (Nap)、乙酰基 (Lev) 和二甲四氢噻吩基醚 (TDS) 在关键分支点进行修饰。通过表面等离子体共振 (SPR) 测定了内溶素 PlyL 和 PlyG 的细胞壁结合域与这些化合物的解离常数。结果发现,半乳糖基化模式极大地影响了结合亲和力,特别是在非还原 GlcNAc 部分的 C-4 具有半乳糖基部分的化合物在低微摩尔范围内结合。已知各种芽孢杆菌的次生细胞壁多糖可能具有共同和可变的结构特征,特别是在半乳糖基化模式方面存在差异。因此,据推测,内溶素对特定芽孢杆菌的特异性是通过选择性结合独特的半乳糖基化核心结构来实现的。

相似文献

5
Genes Required for Bacillus anthracis Secondary Cell Wall Polysaccharide Synthesis.
J Bacteriol. 2016 Dec 13;199(1). doi: 10.1128/JB.00613-16. Print 2017 Jan 1.
8
Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis.
J Bacteriol. 2015 Nov;197(22):3511-20. doi: 10.1128/JB.00494-15. Epub 2015 Aug 31.
9
GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis.
J Bacteriol. 2014 Aug 15;196(16):2969-78. doi: 10.1128/JB.01829-14. Epub 2014 Jun 9.

引用本文的文献

2
Understanding the Molecular Basis for Homodimer Formation of the Pneumococcal Endolysin Cpl-1.
ACS Infect Dis. 2023 May 12;9(5):1092-1104. doi: 10.1021/acsinfecdis.2c00627. Epub 2023 May 1.
3
4
Bacteriophage Tail Proteins as a Tool for Bacterial Pathogen Recognition-A Literature Review.
Antibiotics (Basel). 2022 Apr 21;11(5):555. doi: 10.3390/antibiotics11050555.
5
The Cell Envelope: Composition, Physiological Role, and Clinical Relevance.
Microorganisms. 2020 Nov 26;8(12):1864. doi: 10.3390/microorganisms8121864.
9
Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti-pertussis Vaccine.
Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6451-6458. doi: 10.1002/anie.201915913. Epub 2020 Feb 25.
10
Extraction and Purification of Wall-Bound Polymers of Gram-Positive Bacteria.
Methods Mol Biol. 2019;1954:47-57. doi: 10.1007/978-1-4939-9154-9_5.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
4
Rapid detection methods for Bacillus anthracis in environmental samples: a review.
Appl Microbiol Biotechnol. 2012 Feb;93(4):1411-22. doi: 10.1007/s00253-011-3845-7. Epub 2012 Jan 20.
5
Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes.
J Biol Chem. 2012 Feb 3;287(6):4335-47. doi: 10.1074/jbc.M111.314831. Epub 2011 Dec 14.
8
Bacteriophage reporter technology for sensing and detecting microbial targets.
Anal Bioanal Chem. 2011 May;400(4):991-1007. doi: 10.1007/s00216-010-4561-3. Epub 2010 Dec 17.
9
Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies.
J Am Chem Soc. 2009 Dec 2;131(47):17394-405. doi: 10.1021/ja907358k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验