Suppr超能文献

探究等离子体激元增强的极限。

Probing the ultimate limits of plasmonic enhancement.

机构信息

Center for Metamaterials and Integrated Plasmonics and Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Science. 2012 Aug 31;337(6098):1072-4. doi: 10.1126/science.1224823.

Abstract

Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.

摘要

金属在光学波长下支持表面等离激元,并且能够将光局域到亚波长区域。在这些区域中发生的场增强对各种非线性和量子光学现象设定了最终的限制。我们发现,主要的限制因素不是金属的电阻损耗,而是其介电响应的固有非局域性。金属电子响应的半经典模型对最终的场增强施加了严格的限制。为了证明该模型的准确性,我们研究了距离金膜几埃的金纳米粒子的光学散射。该模型和实验得出的限制对所有纳米光子系统都有一定的限制。

相似文献

1
Probing the ultimate limits of plasmonic enhancement.
Science. 2012 Aug 31;337(6098):1072-4. doi: 10.1126/science.1224823.
2
3
Nonlinear optical detection of proteins based on localized surface plasmons in surface immobilized gold nanospheres.
Langmuir. 2008 Aug 5;24(15):8367-72. doi: 10.1021/la800643e. Epub 2008 Jun 21.
4
Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.
Nano Lett. 2012 Sep 12;12(9):4661-7. doi: 10.1021/nl301988v. Epub 2012 Aug 7.
5
Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.
ACS Nano. 2010 Nov 23;4(11):6565-72. doi: 10.1021/nn101804v. Epub 2010 Oct 12.
7
Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography.
J Vis Exp. 2017 Sep 2(127):56204. doi: 10.3791/56204.
8
Tuning surface plasmons in interconnected hemispherical Au shells.
Opt Express. 2012 Jan 2;20(1):534-46. doi: 10.1364/OE.20.000534.
9
Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response.
Nanoscale. 2013 Jan 7;5(1):110-3. doi: 10.1039/c2nr31982a. Epub 2012 Oct 17.

引用本文的文献

1
Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.
Light Sci Appl. 2025 Sep 10;14(1):312. doi: 10.1038/s41377-025-02010-w.
2
Broadband measurement of Feibelman's quantum surface response functions.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2501121122. doi: 10.1073/pnas.2501121122. Epub 2025 Jun 6.
3
Active control of excitonic strong coupling and electroluminescence in electrically driven plasmonic nanocavities.
Sci Adv. 2025 May 30;11(22):eadt9808. doi: 10.1126/sciadv.adt9808. Epub 2025 May 28.
4
Resolving Molecular Perturbations Near Undercoordinated Metals.
ACS Nano. 2025 Jun 3;19(21):20120-20127. doi: 10.1021/acsnano.5c04738. Epub 2025 May 22.
6
Nonlocal Conduction in a Metawire.
Adv Mater. 2025 Apr;37(13):e2415278. doi: 10.1002/adma.202415278. Epub 2025 Feb 21.
7
Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy.
Nanophotonics. 2022 Mar 21;11(11):2393-2431. doi: 10.1515/nanoph-2021-0694. eCollection 2022 Jun.
8
Fluorescence quenching in plasmonic dimers due to electron tunneling.
Nanophotonics. 2022 Jan 25;11(11):2473-2482. doi: 10.1515/nanoph-2021-0707. eCollection 2022 Jun.
9
Engineering the plasmon modes of a confined electron gas.
Nanophotonics. 2024 Feb 15;13(10):1851-1857. doi: 10.1515/nanoph-2023-0795. eCollection 2024 Apr.
10
Electrical control of Förster resonant energy transfer across single-layer graphene.
Nanophotonics. 2022 Jun 10;11(14):3247-3256. doi: 10.1515/nanoph-2021-0778. eCollection 2022 Jul.

本文引用的文献

1
Bridging quantum and classical plasmonics with a quantum-corrected model.
Nat Commun. 2012 May 8;3:825. doi: 10.1038/ncomms1806.
3
Transformation-optics description of nonlocal effects in plasmonic nanostructures.
Phys Rev Lett. 2012 Mar 9;108(10):106802. doi: 10.1103/PhysRevLett.108.106802. Epub 2012 Mar 6.
5
Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response.
Opt Express. 2012 Feb 13;20(4):4176-88. doi: 10.1364/OE.20.004176.
6
Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer.
Nano Lett. 2012 Mar 14;12(3):1333-9. doi: 10.1021/nl300269c. Epub 2012 Feb 14.
7
Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach.
ACS Nano. 2011 Apr 26;5(4):3293-308. doi: 10.1021/nn200438e. Epub 2011 Mar 18.
8
Collection and concentration of light by touching spheres: a transformation optics approach.
Phys Rev Lett. 2010 Dec 31;105(26):266807. doi: 10.1103/PhysRevLett.105.266807. Epub 2010 Dec 29.
9
Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light.
Nano Lett. 2010 Oct 13;10(10):4150-4. doi: 10.1021/nl102443p.
10
Surface-enhanced nonlinear four-wave mixing.
Phys Rev Lett. 2010 Jan 29;104(4):046803. doi: 10.1103/PhysRevLett.104.046803.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验