Suppr超能文献

测量自动联想:在实验室环境下对内隐联想测验(IAT)算法的验证。

Measuring automatic associations: validation of algorithms for the Implicit Association Test (IAT) in a laboratory setting.

机构信息

Department of Clinical Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands.

出版信息

J Behav Ther Exp Psychiatry. 2013 Mar;44(1):105-13. doi: 10.1016/j.jbtep.2012.07.015. Epub 2012 Aug 11.

Abstract

BACKGROUND AND OBJECTIVES

In their paper, "Understanding and using the Implicit Association Test: I. An improved scoring algorithm", Greenwald, Nosek, and Banaji (2003) investigated different ways to calculate the IAT-effect. However, up to now, it remained unclear whether these findings - based on internet data - also generalize to laboratory settings. Therefore, the main goal of the present study was to cross-validate scoring algorithms for the IAT in a laboratory setting, specifically in the domain of psychopathology.

METHODS

Four known IAT algorithms and seven alternative IAT algorithms were evaluated on several performance criteria in the large-scale laboratory sample of the Netherlands Study of Depression and Anxiety (N = 2981) in which two IATs were included to obtain measurements of automatic self-anxious and automatic self-depressed associations.

RESULTS AND CONCLUSIONS

Results clearly demonstrated that the D(2SD)-measure and the D(600)-measure as well as an alternative algorithm based on the correct trials only (D(noEP)-measure) are suitable to be used in a laboratory setting for IATs with a fixed order of category combinations. It remains important to further replicate these findings, especially in studies that include outcome measures of more spontaneous kinds of behaviors.

摘要

背景与目的

在他们的论文《理解和使用内隐联想测验:I. 一种改进的评分算法》中,格林沃尔德、诺塞克和巴纳吉(2003)研究了计算 IAT 效应的不同方法。然而,到目前为止,这些基于互联网数据的发现是否也适用于实验室环境还不清楚。因此,本研究的主要目的是在实验室环境中对 IAT 的评分算法进行交叉验证,特别是在精神病理学领域。

方法

在荷兰抑郁和焦虑研究(N=2981)的大型实验室样本中,评估了四种已知的 IAT 算法和七种替代 IAT 算法,这些算法在几个性能标准上进行了评估,其中包括两个 IAT,以获得自动自我焦虑和自动自我抑郁关联的测量值。

结果与结论

结果清楚地表明,D(2SD)-测量和 D(600)-测量以及仅基于正确试验的替代算法(D(noEP)-测量)适用于具有固定类别组合顺序的实验室环境中的 IAT。进一步复制这些发现仍然很重要,特别是在包括更自发行为的结果测量的研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验