Suppr超能文献

利用光激活反义寡核苷酸对微小RNA功能进行时空控制。

Spatiotemporal control of microRNA function using light-activated antagomirs.

作者信息

Connelly Colleen M, Uprety Rajendra, Hemphill James, Deiters Alexander

机构信息

Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Mol Biosyst. 2012 Nov;8(11):2987-93. doi: 10.1039/c2mb25175b.

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators and have been shown to regulate many biological processes including embryonal development, cell differentiation, apoptosis, and proliferation. Variations in the expression of certain miRNAs have been linked to a wide range of human diseases - especially cancer - and the diversity of miRNA targets suggests that they are involved in various cellular networks. Several tools have been developed to control the function of individual miRNAs and have been applied to study their biogenesis, biological role, and therapeutic potential; however, common methods lack a precise level of control that allows for the study of miRNA function with high spatial and temporal resolution. Light-activated miRNA antagomirs for mature miR-122 and miR-21 were developed through the site-specific installation of caging groups on the bases of selected nucleotides. Installation of caged nucleotides led to complete inhibition of the antagomir-miRNA hybridization and thus inactivation of antagomir function. The miRNA-inhibitory activity of the caged antagomirs was fully restored upon decaging through a brief UV irradiation. The synthesized antagomirs were applied to the photochemical regulation of miRNA function in mammalian cells. Moreover, spatial control over antagomir activity was obtained in mammalian cells through localized UV exposure. The presented approach enables the precise regulation of miRNA function and miRNA networks with unprecedented spatial and temporal resolution using UV irradiation and can be extended to any miRNA of interest.

摘要

微小RNA(miRNA)是一类小的非编码RNA,作为转录后基因调节因子,已被证明可调节许多生物学过程,包括胚胎发育、细胞分化、凋亡和增殖。某些miRNA表达的变化与多种人类疾病尤其是癌症有关,并且miRNA靶标的多样性表明它们参与了各种细胞网络。已经开发了几种工具来控制单个miRNA的功能,并已应用于研究它们的生物发生、生物学作用和治疗潜力;然而,常用方法缺乏精确的控制水平,无法在高空间和时间分辨率下研究miRNA功能。通过在选定核苷酸的碱基上定点安装笼蔽基团,开发了针对成熟miR-122和miR-21的光激活miRNA拮抗剂。笼蔽核苷酸的安装导致拮抗剂-miRNA杂交完全抑制,从而使拮抗剂功能失活。通过短暂的紫外线照射脱笼后,笼蔽拮抗剂的miRNA抑制活性完全恢复。合成的拮抗剂应用于哺乳动物细胞中miRNA功能的光化学调节。此外,通过局部紫外线照射在哺乳动物细胞中实现了对拮抗剂活性的空间控制。所提出的方法能够使用紫外线照射以前所未有的空间和时间分辨率精确调节miRNA功能和miRNA网络,并且可以扩展到任何感兴趣的miRNA。

相似文献

1
Spatiotemporal control of microRNA function using light-activated antagomirs.
Mol Biosyst. 2012 Nov;8(11):2987-93. doi: 10.1039/c2mb25175b.
2
Control of oncogenic miRNA function by light-activated miRNA antagomirs.
Methods Mol Biol. 2014;1165:99-114. doi: 10.1007/978-1-4939-0856-1_9.
3
Lentivirus-mediated antagomir expression for specific inhibition of miRNA function.
Nucleic Acids Res. 2007;35(22):e149. doi: 10.1093/nar/gkm971. Epub 2007 Nov 19.
4
Silencing of microRNAs in vivo with 'antagomirs'.
Nature. 2005 Dec 1;438(7068):685-9. doi: 10.1038/nature04303. Epub 2005 Oct 30.
5
MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity.
PLoS One. 2015 Dec 22;10(12):e0144810. doi: 10.1371/journal.pone.0144810. eCollection 2015.
6
Specificity, duplex degradation and subcellular localization of antagomirs.
Nucleic Acids Res. 2007;35(9):2885-92. doi: 10.1093/nar/gkm024. Epub 2007 Apr 16.
7
miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132.
Am J Pathol. 2011 Nov;179(5):2519-32. doi: 10.1016/j.ajpath.2011.07.036. Epub 2011 Sep 23.
8
Temporal and spatial regulation of microRNA activity with photoactivatable cantimirs.
ACS Chem Biol. 2011 Dec 16;6(12):1332-8. doi: 10.1021/cb200290e. Epub 2011 Oct 11.
9
Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives.
Nanomedicine. 2021 Jan;31:102303. doi: 10.1016/j.nano.2020.102303. Epub 2020 Sep 24.
10
Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer.
J Cell Physiol. 2020 Oct;235(10):6887-6895. doi: 10.1002/jcp.29584. Epub 2020 Jan 31.

引用本文的文献

1
Harnessing Molecular Recognition for Small-Molecule-Mediated Reversible Photochemical Control Over mRNA Translation.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202503078. doi: 10.1002/anie.202503078. Epub 2025 Apr 22.
2
Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function.
Angew Chem Int Ed Engl. 2024 Apr 22;63(17):e202318773. doi: 10.1002/anie.202318773. Epub 2024 Mar 15.
3
Optical Control of MicroRNA Function in Zebrafish Embryos.
J Am Chem Soc. 2022 Sep 21;144(37):16819-16826. doi: 10.1021/jacs.2c04479. Epub 2022 Sep 8.
4
Expanding Catch and Release DNA Decoy (CRDD) Technology with Pyrimidine Mimics.
Chemistry. 2022 Oct 18;28(58):e202201355. doi: 10.1002/chem.202201355. Epub 2022 Aug 25.
5
Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation.
Trends Neurosci. 2022 Apr;45(4):297-311. doi: 10.1016/j.tins.2022.01.004. Epub 2022 Feb 17.
6
Translational control of gene function through optically regulated nucleic acids.
Chem Soc Rev. 2021 Nov 29;50(23):13253-13267. doi: 10.1039/d1cs00257k.
7
MicroRNA-dependent control of neuroplasticity in affective disorders.
Transl Psychiatry. 2021 May 3;11(1):263. doi: 10.1038/s41398-021-01379-7.
8
Conditionally Activated ("Caged") Oligonucleotides.
Molecules. 2021 Mar 9;26(5):1481. doi: 10.3390/molecules26051481.
9
Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control.
Chembiochem. 2021 Jan 5;22(1):63-72. doi: 10.1002/cbic.202000423. Epub 2020 Nov 17.
10
Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA.
Angew Chem Int Ed Engl. 2020 Jun 2;59(23):8998-9003. doi: 10.1002/anie.201914575. Epub 2020 Apr 6.

本文引用的文献

1
miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay.
Science. 2012 Apr 13;336(6078):237-40. doi: 10.1126/science.1215691.
2
MicroRNA-22 can reduce parathymosin expression in transdifferentiated hepatocytes.
PLoS One. 2012;7(4):e34116. doi: 10.1371/journal.pone.0034116. Epub 2012 Apr 6.
3
High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function.
J Biomol Screen. 2012 Jul;17(6):822-8. doi: 10.1177/1087057112439606. Epub 2012 Mar 12.
4
Secreted microRNAs: a new form of intercellular communication.
Trends Cell Biol. 2012 Mar;22(3):125-32. doi: 10.1016/j.tcb.2011.12.001. Epub 2012 Jan 17.
5
DNA computation: a photochemically controlled AND gate.
J Am Chem Soc. 2012 Feb 29;134(8):3810-5. doi: 10.1021/ja210050s. Epub 2012 Feb 16.
6
Light-activatable molecular beacons with a caged loop sequence.
Chem Commun (Camb). 2012 Mar 14;48(22):2746-8. doi: 10.1039/c2cc16654b. Epub 2011 Dec 7.
7
Temporal and spatial regulation of microRNA activity with photoactivatable cantimirs.
ACS Chem Biol. 2011 Dec 16;6(12):1332-8. doi: 10.1021/cb200290e. Epub 2011 Oct 11.
8
MicroRNAs as post-transcriptional machines and their interplay with cellular networks.
Adv Exp Med Biol. 2011;722:59-74. doi: 10.1007/978-1-4614-0332-6_4.
9
Viruses and microRNAs: RISCy interactions with serious consequences.
Genes Dev. 2011 Sep 15;25(18):1881-94. doi: 10.1101/gad.17352611. Epub 2011 Sep 6.
10
MicroRNA-449 in cell fate determination.
Cell Cycle. 2011 Sep 1;10(17):2874-82. doi: 10.4161/cc.10.17.17181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验