Suppr超能文献

采用反纳米结构聚四氟乙烯表面制备聚合物纳米孔有序阵列。

Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces.

机构信息

Instituto de Microelectrónica de Madrid (CNM-CSIC), Madrid, Spain.

出版信息

Nanotechnology. 2012 Sep 28;23(38):385305. doi: 10.1088/0957-4484/23/38/385305. Epub 2012 Sep 4.

Abstract

We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm(2). The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm(2). The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130-140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm(2)-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array.

摘要

我们提出了一种简单、高效、高通量的方法,用于制造具有 cm(2) 范围内面积的有序纳米多孔聚合物表面。该方法基于对纳米结构化母版的两阶段复制。该过程首先通过将熔融聚四氟乙烯(PTFE)润湿到自有序多孔阳极氧化铝模板上来制备有序的聚四氟乙烯(PTFE)独立纳米柱阵列。纳米柱的直径为 120nm,长度约为 350nm,而阵列扩展到 cm(2) 范围内。PTFE 纳米结构化过程会诱导纳米柱的表面碳化氢化,如共焦拉曼显微镜/光谱所揭示的那样,这增强了原本疏水材料的润湿性,并使其随后可用作反转图案。因此,PTFE 纳米结构随后用作由生物相容的聚(乙烯醇)组成的宏观六边形纳米孔阵列的负模子。在这种特殊情况下,纳米孔的直径为 130-140nm,孔间距离约为 430nm。这种特征尺寸的特征很容易被活细胞识别。此外,在孔阵列脱模过程中,反转模具不会被破坏并且可以重复用于进一步的孔阵列制造。因此,所开发的方法允许高通量生产 cm(2) 范围内的生物相容性纳米多孔表面,这些表面可作为组织修复或伤口愈合的二维支架而具有吸引力。此外,我们的方法可以推广到几乎任何聚合物和生物聚合物有序孔阵列的制造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验