Suppr超能文献

远红荧光蛋白eqFP650和eqFP670中荧光红移的结构基础。

Structural basis for bathochromic shift of fluorescence in far-red fluorescent proteins eqFP650 and eqFP670.

作者信息

Pletnev Sergei, Pletneva Nadya V, Souslova Ekaterina A, Chudakov Dmitry M, Lukyanov Sergey, Wlodawer Alexander, Dauter Zbigniew, Pletnev Vladimir

机构信息

Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1088-97. doi: 10.1107/S0907444912020598. Epub 2012 Aug 18.

Abstract

The crystal structures of the far-red fluorescent proteins (FPs) eqFP650 (λ(ex)(max)/λ(em)(max) 592/650 nm) and eqFP670 (λ(ex)(max)/λ(em)(max) 605/670 nm), the successors of the far-red FP Katushka (λ(ex)(max)/λ(em)(max) 588/635 nm), have been determined at 1.8 and 1.6 Å resolution, respectively. An examination of the structures demonstrated that there are two groups of changes responsible for the bathochromic shift of excitation/emission bands of these proteins relative to their predecessor. The first group of changes resulted in an increase of hydrophilicity at the acylimine site of the chromophore due to the presence of one and three water molecules in eqFP650 and eqFP670, respectively. These water molecules provide connection of the chromophore with the protein scaffold via hydrogen bonds causing an ~15 nm bathochromic shift of the eqFP650 and eqFP670 emission bands. The second group of changes observed in eqFP670 arises from substitution of both Ser143 and Ser158 by asparagines. Asn143 and Asn158 of eqFP670 are hydrogen bonded with each other, as well as with the protein scaffold and with the p-hydroxyphenyl group of the chromophore, resulting in an additional ~20 nm bathochromic shift of the eqFP670 emission band as compared to eqFP650. The role of the observed structural changes was verified by mutagenesis.

摘要

远红光荧光蛋白(FP)eqFP650(λ(ex)(max)/λ(em)(max) 592/650 nm)和eqFP670(λ(ex)(max)/λ(em)(max) 605/670 nm)是远红光FP Katushka(λ(ex)(max)/λ(em)(max) 588/635 nm)的后续产物,其晶体结构分别在1.8 Å和1.6 Å分辨率下得以确定。对这些结构的研究表明,有两组变化导致了这些蛋白质相对于其前身的激发/发射带的红移。第一组变化是由于eqFP650和eqFP670中分别存在一个和三个水分子,导致发色团的酰亚胺位点亲水性增加。这些水分子通过氢键使发色团与蛋白质支架相连,导致eqFP650和eqFP670发射带发生约15 nm的红移。在eqFP670中观察到的第二组变化源于Ser143和Ser158都被天冬酰胺取代。eqFP670的Asn143和Asn158彼此之间、与蛋白质支架以及与发色团的对羟基苯基形成氢键,与eqFP650相比,导致eqFP670发射带额外发生约20 nm的红移。通过诱变验证了所观察到的结构变化的作用。

相似文献

1
Structural basis for bathochromic shift of fluorescence in far-red fluorescent proteins eqFP650 and eqFP670.
Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1088-97. doi: 10.1107/S0907444912020598. Epub 2012 Aug 18.
3
Excited state proton transfer in the red fluorescent protein mKeima.
J Am Chem Soc. 2009 Sep 23;131(37):13212-3. doi: 10.1021/ja904665x.
5
6
Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals.
Chem Biol. 2009 Nov 25;16(11):1169-79. doi: 10.1016/j.chembiol.2009.10.009.
7
Near-infrared fluorescent proteins.
Nat Methods. 2010 Oct;7(10):827-9. doi: 10.1038/nmeth.1501. Epub 2010 Sep 5.
8
Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12712-7. doi: 10.1073/pnas.0502250102. Epub 2005 Aug 24.
9
GFP-like chromoproteins as a source of far-red fluorescent proteins.
FEBS Lett. 2001 Oct 19;507(1):16-20. doi: 10.1016/s0014-5793(01)02930-1.
10
[Infrared Fluorescent Protein iRFP as an Acceptor for Förster Resonance Energy Transfer].
Bioorg Khim. 2015 May-Jun;41(3):299-304. doi: 10.1134/s1068162015030139.

引用本文的文献

1
Use of Flavin-Related Cellular Autofluorescence to Monitor Processes in Microbial Biotechnology.
Microorganisms. 2022 Jun 8;10(6):1179. doi: 10.3390/microorganisms10061179.
2
Elucidating the Molecular Interactions of Chemokine CCL2 Orthologs with Flavonoid Baicalin.
ACS Omega. 2020 Aug 24;5(35):22637-22651. doi: 10.1021/acsomega.0c03428. eCollection 2020 Sep 8.
3
Structure-guided wavelength tuning in far-red fluorescent proteins.
Curr Opin Struct Biol. 2016 Aug;39:124-133. doi: 10.1016/j.sbi.2016.07.010. Epub 2016 Jul 25.
4
Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.
J Phys Chem Lett. 2016 Aug 4;7(15):3046-51. doi: 10.1021/acs.jpclett.6b01172. Epub 2016 Jul 27.
5
Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm.
PLoS One. 2016 Apr 27;11(4):e0148749. doi: 10.1371/journal.pone.0148749. eCollection 2016.
7
X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein.
PLoS One. 2015 Apr 29;10(4):e0123338. doi: 10.1371/journal.pone.0123338. eCollection 2015.
8
Hydrogen bond flexibility correlates with Stokes shift in mPlum variants.
J Phys Chem B. 2014 Mar 20;118(11):2940-8. doi: 10.1021/jp412371y. Epub 2014 Mar 10.
9
Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine.
Acta Crystallogr D Biol Crystallogr. 2013 Sep;69(Pt 9):1850-60. doi: 10.1107/S0907444913015424. Epub 2013 Aug 17.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20257-62. doi: 10.1073/pnas.1013910107. Epub 2010 Nov 8.
4
Near-infrared fluorescent proteins.
Nat Methods. 2010 Oct;7(10):827-9. doi: 10.1038/nmeth.1501. Epub 2010 Sep 5.
7
Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals.
Chem Biol. 2009 Nov 25;16(11):1169-79. doi: 10.1016/j.chembiol.2009.10.009.
8
A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling.
Biochemistry. 2009 Sep 8;48(35):8279-81. doi: 10.1021/bi900870u.
10
Far-red fluorescent tags for protein imaging in living tissues.
Biochem J. 2009 Mar 15;418(3):567-74. doi: 10.1042/BJ20081949.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验