Suppr超能文献

利用计算设计的文库生成发射波长更长的红色荧光蛋白。

Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.

机构信息

Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20257-62. doi: 10.1073/pnas.1013910107. Epub 2010 Nov 8.

Abstract

The longer emission wavelengths of red fluorescent proteins (RFPs) make them attractive for whole-animal imaging because cells are more transparent to red light. Although several useful RFPs have been developed using directed evolution, the quest for further red-shifted and improved RFPs continues. Herein, we report a structure-based rational design approach to red-shift the fluorescence emission of RFPs. We applied a combined computational and experimental approach that uses computational protein design as an in silico prescreen to generate focused combinatorial libraries of mCherry mutants. The computational procedure helped us identify residues that could fulfill interactions hypothesized to cause red-shifts without destabilizing the protein fold. These interactions include stabilization of the excited state through H-bonding to the acylimine oxygen atom, destabilization of the ground state by hydrophobic packing around the charged phenolate, and stabilization of the excited state by a π-stacking interaction. Our methodology allowed us to identify three mCherry mutants (mRojoA, mRojoB, and mRouge) that display emission wavelengths > 630 nm, representing red-shifts of 20-26 nm. Moreover, our approach required the experimental screening of a total of ∼5,000 clones, a number several orders of magnitude smaller than those previously used to achieve comparable red-shifts. Additionally, crystal structures of mRojoA and mRouge allowed us to verify fulfillment of the interactions hypothesized to cause red-shifts, supporting their contribution to the observed red-shifts.

摘要

红色荧光蛋白(RFP)的发射波长较长,因此它们非常适合用于整体动物成像,因为细胞对红光的透明度更高。尽管已经使用定向进化开发了几种有用的 RFP,但对进一步红移和改进 RFP 的探索仍在继续。在此,我们报告了一种基于结构的合理设计方法,可使 RFP 的荧光发射红移。我们应用了一种组合计算和实验方法,该方法使用计算蛋白设计作为计算预筛选,以生成 mCherry 突变体的聚焦组合文库。计算程序帮助我们确定了那些可以满足假设的导致红移而不破坏蛋白折叠的相互作用的残基。这些相互作用包括通过氢键与酰亚胺氧原子稳定激发态、通过带电荷的酚盐周围的疏水性堆积使基态失稳,以及通过π-堆积相互作用稳定激发态。我们的方法使我们能够鉴定出三个 mCherry 突变体(mRojoA、mRojoB 和 mRouge),它们的发射波长大于 630nm,代表红移了 20-26nm。此外,我们的方法总共需要实验筛选约 5000 个克隆,这一数字比以前用于实现类似红移的数字小几个数量级。此外,mRojoA 和 mRouge 的晶体结构使我们能够验证假设的导致红移的相互作用的实现,支持它们对观察到的红移的贡献。

相似文献

1
Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20257-62. doi: 10.1073/pnas.1013910107. Epub 2010 Nov 8.
2
Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity.
PLoS One. 2017 Feb 27;12(2):e0171257. doi: 10.1371/journal.pone.0171257. eCollection 2017.
4
Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif.
ACS Chem Biol. 2016 Feb 19;11(2):508-17. doi: 10.1021/acschembio.5b00774. Epub 2016 Jan 5.
5
Computational Design of the β-Sheet Surface of a Red Fluorescent Protein Allows Control of Protein Oligomerization.
PLoS One. 2015 Jun 15;10(6):e0130582. doi: 10.1371/journal.pone.0130582. eCollection 2015.
6
Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores.
Curr Opin Struct Biol. 2017 Aug;45:91-99. doi: 10.1016/j.sbi.2016.12.001. Epub 2016 Dec 27.
8
Exploring color tuning strategies in red fluorescent proteins.
Photochem Photobiol Sci. 2015 Feb;14(2):200-12. doi: 10.1039/c4pp00212a.
9
Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm.
PLoS One. 2016 Apr 27;11(4):e0148749. doi: 10.1371/journal.pone.0148749. eCollection 2016.
10
Monomerization of far-red fluorescent proteins.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11294-E11301. doi: 10.1073/pnas.1807449115. Epub 2018 Nov 13.

引用本文的文献

1
Computational remodeling of an enzyme conformational landscape for altered substrate selectivity.
Nat Commun. 2023 Sep 28;14(1):6058. doi: 10.1038/s41467-023-41762-0.
2
Development of Highly Fluorogenic Styrene Probes for Visualizing RNA in Live Cells.
ACS Chem Biol. 2023 Jul 21;18(7):1523-1533. doi: 10.1021/acschembio.3c00141. Epub 2023 May 18.
3
Generation of bright monomeric red fluorescent proteins computational design of enhanced chromophore packing.
Chem Sci. 2022 Jan 11;13(5):1408-1418. doi: 10.1039/d1sc05088e. eCollection 2022 Feb 2.
4
Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
Nat Commun. 2020 Sep 23;11(1):4808. doi: 10.1038/s41467-020-18619-x.
5
Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore.
J Am Chem Soc. 2020 Jun 24;142(25):11032-11041. doi: 10.1021/jacs.0c02796. Epub 2020 Jun 9.
6
In vivo photoacoustic imaging of a nonfluorescent E2 crimson genetic reporter in mammalian tissues.
J Biomed Opt. 2020 Apr;25(4):1-12. doi: 10.1117/1.JBO.25.4.046004.
7
Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins.
J Am Chem Soc. 2019 Sep 25;141(38):15250-15265. doi: 10.1021/jacs.9b07152. Epub 2019 Sep 11.
10
Monomerization of far-red fluorescent proteins.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11294-E11301. doi: 10.1073/pnas.1807449115. Epub 2018 Nov 13.

本文引用的文献

1
Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19838-43. doi: 10.1073/pnas.1012985107. Epub 2010 Nov 2.
3
Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals.
Chem Biol. 2009 Nov 25;16(11):1169-79. doi: 10.1016/j.chembiol.2009.10.009.
4
A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling.
Biochemistry. 2009 Sep 8;48(35):8279-81. doi: 10.1021/bi900870u.
5
Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome.
Science. 2009 May 8;324(5928):804-7. doi: 10.1126/science.1168683.
7
Far-red fluorescent tags for protein imaging in living tissues.
Biochem J. 2009 Mar 15;418(3):567-74. doi: 10.1042/BJ20081949.
8
Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
J Am Chem Soc. 2008 Sep 24;130(38):12578-9. doi: 10.1021/ja8046443. Epub 2008 Aug 30.
9
Optimized and far-red-emitting variants of fluorescent protein eqFP611.
Chem Biol. 2008 Mar;15(3):224-33. doi: 10.1016/j.chembiol.2008.02.008.
10
Bright far-red fluorescent protein for whole-body imaging.
Nat Methods. 2007 Sep;4(9):741-6. doi: 10.1038/nmeth1083. Epub 2007 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验