Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Bronx, New York 10461, United States.
Sci Rep. 2013;3:1847. doi: 10.1038/srep01847.
Most GFP-like fluorescent proteins exhibit small Stokes shifts (10-45 nm) due to rigidity of the chromophore environment that excludes non-fluorescent relaxation to a ground state. An unusual near-infrared derivative of the red fluorescent protein mKate, named TagRFP675, exhibits the Stokes shift, which is 30 nm extended comparing to that of the parental protein. In physiological conditions, TagRFP675 absorbs at 598 nm and emits at 675 nm that makes it the most red-shifted protein of the GFP-like protein family. In addition, its emission maximum strongly depends on the excitation wavelength. Structures of TagRFP675 revealed the common DsRed-like chromophore, which, however, interacts with the protein matrix via an extensive network of hydrogen bonds capable of large flexibility. Based on the spectroscopic, biochemical, and structural analysis we suggest that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the TagRFP675 spectral properties.
大多数 GFP 样荧光蛋白由于发色团环境的刚性而表现出较小的斯托克斯位移(10-45nm),该环境排除了非荧光向基态的松弛。红色荧光蛋白 mKate 的一种不寻常的近红外衍生物,名为 TagRFP675,表现出斯托克斯位移,与母体蛋白相比,其斯托克斯位移延长了 30nm。在生理条件下,TagRFP675 在 598nm 处吸收,在 675nm 处发射,使其成为 GFP 样蛋白家族中红移最大的蛋白。此外,其发射最大值强烈依赖于激发波长。TagRFP675 的结构揭示了常见的 DsRed 样发色团,然而,该发色团通过能够具有很大灵活性的氢键广泛网络与蛋白质基质相互作用。基于光谱学、生物化学和结构分析,我们提出发色团与蛋白质基质之间氢键相互作用的重排是 TagRFP675 光谱性质的原因。