Suppr超能文献

ECGNET:通过深度视觉注意力学习房颤检测的关注位置。

ECGNET: Learning where to attend for detection of atrial fibrillation with deep visual attention.

作者信息

Mousavi Seyed Sajad, Afghah Fatemah, Razi Abolfazl, Acharya U Rajendra

机构信息

School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ.

School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff AZ.

出版信息

IEEE EMBS Int Conf Biomed Health Inform. 2019 May;2019. doi: 10.1109/BHI.2019.8834637. Epub 2019 Sep 12.

Abstract

The complexity of the patterns associated with atrial fibrillation (AF) and the high level of noise affecting these patterns have significantly limited the application of current signal processing and shallow machine learning approaches to accurately detect this condition. Deep neural networks have shown to be very powerful to learn the non-linear patterns in various problems such as computer vision tasks. While deep learning approaches have been utilized to learn complex patterns related to the presence of AF in electrocardiogram (ECG) signals, they can considerably benefit from knowing which parts of the signal is more important to focus on during learning. In this paper, we introduce a two-channel deep neural network to more accurately detect the presence of AF in the ECG signals. The first channel takes in an ECG signal and automatically learns where to attend for detection of AF. The second channel simultaneously takes in the same ECG signal to consider all features of the entire signal. Besides improving detection accuracy, this model can guide the physicians via visualization that what parts of the given ECG signal are important to attend while trying to detect atrial fibrillation. The experimental results confirm that the proposed model significantly improves the performance of AF detection on well-known MIT-BIH AF database with 5-s ECG segments (achieved a sensitivity of 99.53%, specificity of 99.26% and accuracy of 99.40%).

摘要

与心房颤动(AF)相关的模式的复杂性以及影响这些模式的高水平噪声,显著限制了当前信号处理和浅层机器学习方法在准确检测这种病症方面的应用。深度神经网络已被证明在学习各种问题(如计算机视觉任务)中的非线性模式方面非常强大。虽然深度学习方法已被用于学习心电图(ECG)信号中与房颤存在相关的复杂模式,但在学习过程中了解信号的哪些部分更重要以便关注,它们可以从中受益匪浅。在本文中,我们引入了一种双通道深度神经网络,以更准确地检测ECG信号中的房颤。第一个通道接收ECG信号并自动学习在何处关注房颤检测。第二个通道同时接收相同的ECG信号以考虑整个信号的所有特征。除了提高检测准确性外,该模型还可以通过可视化向医生表明,在试图检测房颤时,给定ECG信号的哪些部分对于关注很重要。实验结果证实,所提出的模型在具有5秒ECG片段的著名MIT - BIH AF数据库上显著提高了房颤检测的性能(灵敏度达到99.53%,特异性达到99.26%,准确率达到99.40%)。

相似文献

1
ECGNET: Learning where to attend for detection of atrial fibrillation with deep visual attention.
IEEE EMBS Int Conf Biomed Health Inform. 2019 May;2019. doi: 10.1109/BHI.2019.8834637. Epub 2019 Sep 12.
3
TP-CNN: A Detection Method for atrial fibrillation based on transposed projection signals with compressed sensed ECG.
Comput Methods Programs Biomed. 2021 Oct;210:106358. doi: 10.1016/j.cmpb.2021.106358. Epub 2021 Aug 26.
6
Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal.
J Korean Med Sci. 2019 Feb 15;34(7):e64. doi: 10.3346/jkms.2019.34.e64. eCollection 2019 Feb 25.
7
Transfer Learning for Detection of Atrial Fibrillation in Deterministic Compressive Sensed ECG.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5398-5401. doi: 10.1109/EMBC44109.2020.9175813.
8
Detection of Brief Episodes of Atrial Fibrillation Based on Electrocardiomatrix and Convolutional Neural Network.
Front Physiol. 2021 Aug 25;12:673819. doi: 10.3389/fphys.2021.673819. eCollection 2021.
9
A Q-transform-based deep learning model for the classification of atrial fibrillation types.
Phys Eng Sci Med. 2024 Jun;47(2):621-631. doi: 10.1007/s13246-024-01391-3. Epub 2024 Feb 14.
10
Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network.
Comput Biol Med. 2020 Jan;116:103378. doi: 10.1016/j.compbiomed.2019.103378. Epub 2019 Aug 2.

引用本文的文献

1
QRS-centric beat-wise atrial fibrillation detection in ECG signals using deep neural networks.
Comput Biol Med. 2025 Jun;192(Pt B):110282. doi: 10.1016/j.compbiomed.2025.110282. Epub 2025 May 15.
3
[A lightweight classification network for single-lead atrial fibrillation based on depthwise separable convolution and attention mechanism].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Mar 20;45(3):650-660. doi: 10.12122/j.issn.1673-4254.2025.03.23.
7
Multiscale dilated convolutional neural network for Atrial Fibrillation detection.
PLoS One. 2024 Jun 3;19(6):e0301691. doi: 10.1371/journal.pone.0301691. eCollection 2024.
8
Automated identification of atrial fibrillation from single-lead ECGs using multi-branching ResNet.
Front Physiol. 2024 Apr 9;15:1362185. doi: 10.3389/fphys.2024.1362185. eCollection 2024.
9
Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the Cardiac Cycle.
BME Front. 2022 Apr 12;2022:9813062. doi: 10.34133/2022/9813062. eCollection 2022.
10
Multimodal Deep Learning for Predicting Adverse Birth Outcomes Based on Early Labour Data.
Bioengineering (Basel). 2023 Jun 19;10(6):730. doi: 10.3390/bioengineering10060730.

本文引用的文献

1
Inter- and intra-patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach.
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:1308-1312. doi: 10.1109/icassp.2019.8683140. Epub 2019 Apr 17.
2
A Feature Selection Method Based on Shapley Value to False Alarm Reduction in ICUs A Genetic-Algorithm Approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:319-323. doi: 10.1109/EMBC.2018.8512266.
3
Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks.
Front Physiol. 2018 Aug 30;9:1206. doi: 10.3389/fphys.2018.01206. eCollection 2018.
4
Detecting atrial fibrillation by deep convolutional neural networks.
Comput Biol Med. 2018 Feb 1;93:84-92. doi: 10.1016/j.compbiomed.2017.12.007. Epub 2017 Dec 15.
5
Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine.
Comput Biol Med. 2015 May;60:132-42. doi: 10.1016/j.compbiomed.2015.03.005. Epub 2015 Mar 14.
6
Low-complexity detection of atrial fibrillation in continuous long-term monitoring.
Comput Biol Med. 2015 Oct 1;65:184-91. doi: 10.1016/j.compbiomed.2015.01.019. Epub 2015 Jan 28.
7
Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy.
Biomed Eng Online. 2014 Feb 17;13(1):18. doi: 10.1186/1475-925X-13-18.
8
Time-varying coherence function for atrial fibrillation detection.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2783-93. doi: 10.1109/TBME.2013.2264721. Epub 2013 May 22.
9
High accuracy in automatic detection of atrial fibrillation for Holter monitoring.
J Zhejiang Univ Sci B. 2012 Sep;13(9):751-6. doi: 10.1631/jzus.B1200107.
10
Atrial fibrillation detection using an iPhone 4S.
IEEE Trans Biomed Eng. 2013 Jan;60(1):203-6. doi: 10.1109/TBME.2012.2208112. Epub 2012 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验