Giudicessi John R, Kapplinger Jamie D, Tester David J, Alders Marielle, Salisbury Benjamin A, Wilde Arthur A M, Ackerman Michael J
Department of Medicine/Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Circ Cardiovasc Genet. 2012 Oct 1;5(5):519-28. doi: 10.1161/CIRCGENETICS.112.963785. Epub 2012 Sep 4.
Hundreds of nonsynonymous single nucleotide variants (nsSNVs) have been identified in the 2 most common long-QT syndrome-susceptibility genes (KCNQ1 and KCNH2). Unfortunately, an ≈3%
and KCNH2 nsSNVs amongst healthy individuals complicates the ability to distinguish rare pathogenic mutations from similarly rare yet presumably innocuous variants.
In this study, 4 tools [(1) conservation across species, (2) Grantham values, (3) sorting intolerant from tolerant, and (4) polymorphism phenotyping] were used to predict pathogenic or benign status for nsSNVs identified across 388 clinically definite long-QT syndrome cases and 1344 ostensibly healthy controls. From these data, estimated predictive values were determined for each tool independently, in concert with previously published protein topology-derived estimated predictive values, and synergistically when ≥3 tools were in agreement. Overall, all 4 tools displayed a statistically significant ability to distinguish between case-derived and control-derived nsSNVs in KCNQ1, whereas each tool, except Grantham values, displayed a similar ability to differentiate KCNH2 nsSNVs. Collectively, when at least 3 of the 4 tools agreed on the pathogenic status of C-terminal nsSNVs located outside the KCNH2/Kv11.1 cyclic nucleotide-binding domain, the topology-specific estimated predictive value improved from 56% to 91%.
Although in silico prediction tools should not be used to predict independently the pathogenicity of a novel, rare nSNV, our results support the potential clinical use of the synergistic utility of these tools to enhance the classification of nsSNVs, particularly for Kv11.1's difficult to interpret C-terminal region.
在两种最常见的长QT综合征易感基因(KCNQ1和KCNH2)中已鉴定出数百个非同义单核苷酸变异(nsSNV)。遗憾的是,健康个体中约3%的KCNQ1和KCNH2 nsSNV使得区分罕见致病突变与同样罕见但可能无害的变异变得复杂。
在本研究中,使用4种工具[(1)跨物种保守性,(2)格兰瑟姆值,(3)从耐受中筛选不耐受,以及(4)多态性表型分析]来预测388例临床确诊的长QT综合征病例和1344名表面健康对照中鉴定出的nsSNV的致病或良性状态。根据这些数据,分别确定每种工具的估计预测值,与先前发表的基于蛋白质拓扑结构的估计预测值协同使用,当≥3种工具一致时协同使用。总体而言,所有4种工具在区分KCNQ1中病例来源和对照来源的nsSNV方面均显示出统计学上的显著能力,而除格兰瑟姆值外的每种工具在区分KCNH2 nsSNV方面均显示出类似能力。总体而言,当4种工具中的至少3种对位于KCNH2/Kv11.1环核苷酸结合域外的C末端nsSNV的致病状态达成一致时,拓扑结构特异性估计预测值从56%提高到91%。
虽然不应使用计算机预测工具独立预测新型罕见nSNV的致病性,但我们的结果支持这些工具协同使用在临床上的潜在用途,以加强nsSNV的分类,特别是对于Kv11.1难以解释的C末端区域。