Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15930-5. doi: 10.1073/pnas.1203534109. Epub 2012 Sep 4.
P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to the delivery of small-molecule drugs across the blood-brain barrier and into the CNS. Here we test a unique signaling-based strategy to overcome this obstacle. We used a confocal microscopy-based assay with isolated rat brain capillaries to map a signaling pathway that within minutes abolishes P-glycoprotein transport activity without altering transporter protein expression or tight junction permeability. This pathway encompasses elements of proinflammatory- (TNF-α) and sphingolipid-based signaling. Critical to this pathway was signaling through sphingosine-1-phosphate receptor 1 (S1PR1). In brain capillaries, S1P acted through S1PR1 to rapidly and reversibly reduce P-glycoprotein transport activity. Sphingosine reduced transport by a sphingosine kinase-dependent mechanism. Importantly, fingolimod (FTY720), a S1P analog recently approved for treatment of multiple sclerosis, also rapidly reduced P-glycoprotein activity; similar effects were found with the active, phosphorylated metabolite (FTY720P). We validated these findings in vivo using in situ brain perfusion in rats. Administration of S1P, FTY720, or FTY729P increased brain uptake of three radiolabeled P-glycoprotein substrates, (3)H-verapamil (threefold increase), (3)H-loperamide (fivefold increase), and (3)H-paclitaxel (fivefold increase); blocking S1PR1 abolished this effect. Tight junctional permeability, measured as brain (14)C-sucrose accumulation, was not altered. Therefore, targeting signaling through S1PR1 at the blood-brain barrier with the sphingolipid-based drugs, FTY720 or FTY720P, can rapidly and reversibly reduce basal P-glycoprotein activity and thus improve delivery of small-molecule therapeutics to the brain.
P-糖蛋白是一种 ATP 驱动的药物外排泵,是小分子药物穿过血脑屏障并进入中枢神经系统的主要障碍。在这里,我们测试了一种独特的基于信号的策略来克服这一障碍。我们使用基于共聚焦显微镜的分离大鼠脑毛细血管测定法来绘制信号通路图谱,该信号通路在数分钟内消除 P-糖蛋白转运活性,而不会改变转运蛋白表达或紧密连接通透性。该途径包括促炎(TNF-α)和神经鞘脂类信号。对该途径至关重要的是神经鞘氨醇-1-磷酸受体 1(S1PR1)的信号。在脑毛细血管中,S1P 通过 S1PR1 快速且可逆地降低 P-糖蛋白转运活性。神经鞘氨醇通过鞘氨醇激酶依赖的机制降低转运。重要的是,最近被批准用于治疗多发性硬化症的 S1P 类似物 fingolimod(FTY720)也可快速降低 P-糖蛋白活性;在活性磷酸化代谢物(FTY720P)中也发现了类似的作用。我们在体内使用大鼠原位脑灌注验证了这些发现。施用 S1P、FTY720 或 FTY729P 可增加三种放射性标记的 P-糖蛋白底物(3)H-维拉帕米(增加三倍)、(3)H-洛哌丁胺(增加五倍)和(3)H-紫杉醇(增加五倍)在脑中的摄取;阻断 S1PR1 可消除这种作用。紧密连接通透性(以脑(14)C-蔗糖积累来衡量)没有改变。因此,用神经鞘脂类药物 FTY720 或 FTY720P 靶向血脑屏障上的 S1PR1 信号,可以快速和可逆地降低基础 P-糖蛋白活性,从而改善小分子治疗药物向大脑的传递。