Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15431-6. doi: 10.1073/pnas.1204600109. Epub 2012 Sep 4.
Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C(82)(OH)(22) can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C(82)(OH)(22) effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C(82)(OH)(22) not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C(82)(OH)(22)-MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C(82)(OH)(22) inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C(82)(OH)(22) exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C(82)(OH)(22) a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.
胰腺导管腺癌是实体肿瘤中最致命的一种,也是北美癌症相关死亡的第四大主要原因。由于基质金属蛋白酶 (MMPs) 在血管生成和细胞外基质 (ECM) 降解中对肿瘤存活和侵袭具有重要作用,因此长期以来一直被作为潜在的抗癌治疗靶点。然而,针对 MMPs 的抑制特异性和抑制机制的分子水平理解在很大程度上仍未得到解决。在这里,我们发现内包金属富勒醇 Gd@C(82)(OH)(22) 可以在动物、组织和细胞水平的实验中成功抑制肿瘤的活性。Gd@C(82)(OH)(22) 在裸鼠模型中的人胰腺癌细胞异种移植中有效阻止肿瘤生长。酶活性测定也表明,Gd@C(82)(OH)(22) 不仅抑制 MMPs 的表达,而且显著降低其活性。然后,我们通过大规模分子动力学模拟,以原子细节研究 Gd@C(82)(OH)(22)-MMP-9 相互作用,阐明了分子机制。我们的数据表明,Gd@C(82)(OH)(22) 主要通过外激相互作用抑制 MMP-9,而众所周知的锌催化位点仅起最小作用。在非特异性静电、疏水性和特异性氢键相互作用的引导下,Gd@C(82)(OH)(22) 在配体特异性环 S1' 附近表现出特定的结合模式,从而抑制 MMP-9 的活性。MMP 表达的抑制和特定的结合模式使 Gd@C(82)(OH)(22) 成为一种比传统药物更有效的用于胰腺癌的纳米药物,传统药物通常直接针对蛋白水解位点,但无法实现选择性抑制。我们的发现为致命疾病(如胰腺癌)的新型纳米药物设计提供了新的思路。