State Key Laboratory of Radiation Medicine and Protection, Institute of Quantitative Biology and Medicine, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
Biomolecules. 2022 Jan 12;12(1):123. doi: 10.3390/biom12010123.
The endohedral metallofullerenol Gd@C(OH) has been identified as a possible antineoplastic agent that can inhibit both the growth and metastasis of cancer cells. Despite these potentially important effects, our understanding of the interactions between Gd@C(OH) and biomacromolecules remains incomplete. Here, we study the interaction between Gd@C(OH) and the human voltage-dependent anion channel 1 (hVDAC1), the most abundant porin embedded in the mitochondrial outer membrane (MOM), and a potential druggable target for novel anticancer therapeutics. Using in silico approaches, we observe that Gd@C(OH) molecules can permeate and form stable interactions with the pore of hVDAC1. Further, this penetration can occur from either side of the MOM to elicit blockage of the pore. The binding between Gd@C(OH) and hVDAC1 is largely driven by long-range electrostatic interactions. Analysis of the binding free energies indicates that it is thermodynamically more favorable for Gd@C(OH) to bind to the hVDAC1 pore when it enters the channel from inside the membrane rather than from the cytoplasmic side of the protein. Multiple factors contribute to the preferential penetration, including the surface electrostatic landscape of hVDAC1 and the unique physicochemical properties of Gd@C(OH). Our findings provide insights into the potential molecular interactions of macromolecular biological systems with the Gd@C(OH) nanodrug.
笼型金属富勒醇 Gd@C(OH) 已被确定为一种潜在的抗肿瘤药物,能够抑制癌细胞的生长和转移。尽管具有这些潜在的重要作用,但我们对 Gd@C(OH) 与生物大分子之间相互作用的理解仍不完整。在这里,我们研究了 Gd@C(OH) 与人类电压依赖性阴离子通道 1(hVDAC1)之间的相互作用,hVDAC1 是线粒体外膜(MOM)中含量最丰富的孔蛋白,也是新型抗癌治疗药物的潜在可用药靶标。通过计算模拟方法,我们观察到 Gd@C(OH) 分子可以穿透并与 hVDAC1 的孔形成稳定的相互作用。此外,这种穿透可以从 MOM 的任一侧发生,从而引发孔的阻塞。Gd@C(OH) 和 hVDAC1 之间的结合主要是由长程静电相互作用驱动的。结合自由能分析表明,当 Gd@C(OH) 从膜内进入通道时,与 hVDAC1 孔结合在热力学上更为有利,而不是从蛋白质的细胞质侧进入。多种因素导致了优先穿透,包括 hVDAC1 的表面静电景观和 Gd@C(OH) 的独特物理化学性质。我们的研究结果为大分子生物系统与 Gd@C(OH) 纳米药物的潜在分子相互作用提供了新的见解。