Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany.
ACS Nano. 2012 Oct 23;6(10):8713-27. doi: 10.1021/nn3023602. Epub 2012 Sep 13.
Surface hydrophobicity plays a significant role in controlling the interactions between nanoparticles and lipid membranes. In principle, a nanoparticle can be encapsulated into a liposome, either being incorporated into the hydrophobic bilayer interior or trapped within the aqueous vesicle core. In this paper, we demonstrate the preparation and characterization of polymer-functionalized CdSe NPs, tuning their interaction with mixed lipid/polymer membranes from 1,2-dipalmitoyl-sn-glycero-3-phophocholine and PIB(87)-b-PEO(17) block copolymer by varying their surface hydrophobicity. It is observed that hydrophobic PIB-modified CdSe NPs can be selectively located within polymer domains in a mixed lipid/polymer monolayer at the air/water interface, changing their typical domain morphologies, while amphiphilic PIB-PEO-modified CdSe NPs showed no specific localization in phase-separated lipid/polymer films. In addition, hydrophilic water-soluble CdSe NPs can readily adsorb onto spread monolayers, showing a larger effect on the molecule packing at the air/water interface in the case of pure lipid films compared to mixed monolayers. Furthermore, the incorporation of PIB-modified CdSe NPs into hybrid lipid/polymer GUVs is demonstrated with respect to the prevailing phase state of the hybrid membrane. Monitoring fluorescent-labeled PIB-CdSe NPs embedded into phase-separated vesicles, it is demonstrated that they are enriched in one specific phase, thus probing their selective incorporation into the hydrophobic portion of PIB(87)-b-PEO(17) BCP-rich domains. Thus, the formation of biocompatible hybrid GUVs with selectively incorporated nanoparticles opens a new perspective for subtle engineering of membranes together with their (nano-) phase structure serving as a model system in designing functional nanomaterials for effective nanomedicine or drug delivery.
表面疏水性在控制纳米粒子与脂质膜之间的相互作用方面起着重要作用。原则上,纳米粒子可以被包封在脂质体中,要么被纳入疏水性双层内部,要么被捕获在水性囊泡核心内。在本文中,我们展示了聚合物功能化的 CdSe NPs 的制备和表征,通过改变其表面疏水性来调节它们与混合脂质/聚合物膜(由 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱和 PIB(87)-b-PEO(17)嵌段共聚物组成)的相互作用。观察到疏水性 PIB 修饰的 CdSe NPs 可以在空气/水界面处的混合脂质/聚合物单层中的聚合物域内被选择性地定位,改变其典型的畴形态,而两亲性 PIB-PEO 修饰的 CdSe NPs 在相分离的脂质/聚合物膜中没有显示出特定的定位。此外,亲水性水溶性 CdSe NPs 可以容易地吸附在铺展的单层上,在纯脂质膜的情况下,与混合单层相比,对空气/水界面处的分子堆积有更大的影响。此外,还证明了 PIB 修饰的 CdSe NPs 可以掺入混合脂质/聚合物 GUV 中,这与混合膜的主要相态有关。监测嵌入到相分离囊泡中的荧光标记的 PIB-CdSe NPs,可以证明它们在一个特定的相中富集,从而探测它们选择性地掺入 PIB(87)-b-PEO(17)BCP 富域的疏水区。因此,具有选择性掺入纳米粒子的生物相容性混合 GUV 的形成为微妙的膜工程开辟了新的视角,其(纳米)相结构作为设计用于有效纳米医学或药物输送的功能性纳米材料的模型系统。
J Nanosci Nanotechnol. 2007-11
ACS Nano. 2012-10-29
J Funct Biomater. 2022-10-14
Chem Rev. 2021-11-24
J Biomed Res. 2021-3-23
Front Bioeng Biotechnol. 2019-9-20
Polymers (Basel). 2017-8-17