Suppr超能文献

利用 MeSH 层次结构进行查询扩展以提高图像检索效果。

Improving image retrieval effectiveness via query expansion using MeSH hierarchical structure.

机构信息

Department of Information Technology, University of Huelva, Huelva, Spain.

出版信息

J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1014-20. doi: 10.1136/amiajnl-2012-000943. Epub 2012 Sep 5.

Abstract

OBJECTIVE

We explored two strategies for query expansion utilizing medical subject headings (MeSH) ontology to improve the effectiveness of medical image retrieval systems. In order to achieve greater effectiveness in the expansion, the search text was analyzed to identify which terms were most amenable to being expanded.

DESIGN

To perform the expansions we utilized the hierarchical structure by which the MeSH descriptors are organized. Two strategies for selecting the terms to be expanded in each query were studied. The first consisted of identifying the medical concepts using the unified medical language system metathesaurus. In the second strategy the text of the query was divided into n-grams, resulting in sequences corresponding to MeSH descriptors.

MEASUREMENTS

For the evaluation of the system, we used the collection made available by the ImageCLEF organization in its 2011 medical image retrieval task. The main measure of efficiency employed for evaluating the techniques developed was the mean average precision (MAP).

RESULTS

Both strategies exceeded the average MAP score in the ImageCLEF 2011 competition (0.1644). The n-gram expansion strategy achieved a MAP of 0.2004, which represents an improvement of 21.89% over the average MAP score in the competition. On the other hand, the medical concepts expansion strategy scored 0.2172 in the MAP, representing a 32.11% improvement. This run won the text-based medical image retrieval task in 2011.

CONCLUSIONS

Query expansion exploiting the hierarchical structure of the MeSH descriptors achieved a significant improvement in image retrieval systems.

摘要

目的

我们探索了两种利用医学主题词(MeSH)本体进行查询扩展的策略,以提高医学图像检索系统的有效性。为了实现更大的扩展效果,分析了搜索文本以确定哪些术语最适合扩展。

设计

为了进行扩展,我们利用了 MeSH 描述符的层次结构进行组织。研究了两种在每个查询中选择要扩展的术语的策略。第一种策略是使用统一医学语言系统术语集来识别医学概念。第二种策略是将查询的文本分为 n 元组,生成与 MeSH 描述符相对应的序列。

测量

为了评估系统,我们使用了 ImageCLEF 组织在其 2011 年医学图像检索任务中提供的集合。用于评估所开发技术的主要效率衡量标准是平均平均精度(MAP)。

结果

这两种策略都超过了 ImageCLEF 2011 竞赛的平均 MAP 得分(0.1644)。n 元组扩展策略的 MAP 达到 0.2004,比竞赛中的平均 MAP 得分提高了 21.89%。另一方面,医学概念扩展策略在 MAP 中得分为 0.2172,代表提高了 32.11%。该运行在 2011 年赢得了基于文本的医学图像检索任务。

结论

利用 MeSH 描述符的层次结构进行查询扩展,显著提高了图像检索系统的性能。

相似文献

1
Improving image retrieval effectiveness via query expansion using MeSH hierarchical structure.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1014-20. doi: 10.1136/amiajnl-2012-000943. Epub 2012 Sep 5.
2
Document/query expansion based on selecting significant concepts for context based retrieval of medical images.
J Biomed Inform. 2019 Jul;95:103210. doi: 10.1016/j.jbi.2019.103210. Epub 2019 May 17.
4
Query expansion using the UMLS Metathesaurus.
Proc AMIA Annu Fall Symp. 1997:485-9.
6
Semantic-Enhanced Query Expansion System for Retrieving Medical Image Notes.
J Med Syst. 2018 Apr 25;42(6):105. doi: 10.1007/s10916-018-0954-1.
8
Leveraging medical thesauri and physician feedback for improving medical literature retrieval for case queries.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):851-8. doi: 10.1136/amiajnl-2011-000293. Epub 2012 Mar 21.
9
On the query reformulation technique for effective MEDLINE document retrieval.
J Biomed Inform. 2010 Oct;43(5):686-93. doi: 10.1016/j.jbi.2010.04.005. Epub 2010 Apr 13.
10
UMLS-Query: a perl module for querying the UMLS.
AMIA Annu Symp Proc. 2008 Nov 6;2008:652-6.

引用本文的文献

1
Large scale biomedical texts classification: a kNN and an ESA-based approaches.
J Biomed Semantics. 2016 Jun 16;7:40. doi: 10.1186/s13326-016-0073-1.
2
Trends in biomedical informatics: automated topic analysis of JAMIA articles.
J Am Med Inform Assoc. 2015 Nov;22(6):1153-63. doi: 10.1093/jamia/ocv157.
3
Automatically finding relevant citations for clinical guideline development.
J Biomed Inform. 2015 Oct;57:436-45. doi: 10.1016/j.jbi.2015.09.003. Epub 2015 Sep 10.
4
Biomedical imaging ontologies: A survey and proposal for future work.
J Pathol Inform. 2015 Jun 23;6:37. doi: 10.4103/2153-3539.159214. eCollection 2015.
5
Biomedical imaging informatics in the era of precision medicine: progress, challenges, and opportunities.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1010-3. doi: 10.1136/amiajnl-2013-002315.
6
Biomarker identification using text mining.
Comput Math Methods Med. 2012;2012:135780. doi: 10.1155/2012/135780. Epub 2012 Nov 11.

本文引用的文献

1
Recommending MeSH terms for annotating biomedical articles.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7. doi: 10.1136/amiajnl-2010-000055. Epub 2011 May 25.
2
Evaluation of Query Expansion Using MeSH in PubMed.
Inf Retr Boston. 2009;12(1):69-80. doi: 10.1007/s10791-008-9074-8.
3
Query expansion with a medical ontology to improve a multimodal information retrieval system.
Comput Biol Med. 2009 Apr;39(4):396-403. doi: 10.1016/j.compbiomed.2009.01.012. Epub 2009 Mar 6.
4
Automated semantic indexing of figure captions to improve radiology image retrieval.
J Am Med Inform Assoc. 2009 May-Jun;16(3):380-6. doi: 10.1197/jamia.M2945. Epub 2009 Mar 4.
5
Yale Image Finder (YIF): a new search engine for retrieving biomedical images.
Bioinformatics. 2008 Sep 1;24(17):1968-70. doi: 10.1093/bioinformatics/btn340. Epub 2008 Jul 9.
6
BioText Search Engine: beyond abstract search.
Bioinformatics. 2007 Aug 15;23(16):2196-7. doi: 10.1093/bioinformatics/btm301. Epub 2007 Jun 1.
7
GoldMiner: a radiology image search engine.
AJR Am J Roentgenol. 2007 Jun;188(6):1475-8. doi: 10.2214/AJR.06.1740.
9
The Unified Medical Language System (UMLS): integrating biomedical terminology.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi: 10.1093/nar/gkh061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验