Department of Animal Science, University of California, Davis 95616, USA.
J Anim Sci. 2012 Dec;90(12):4656-65. doi: 10.2527/jas.2011-4654. Epub 2012 Sep 5.
Increased animal performance is suggested as one of the most effective mitigation strategies to decrease greenhouse gas (GHG) and ammonia (NH(3)) emissions from livestock production per unit of product produced. Little information exists, however, on the effects of increased animal productivity on the net decrease in emission from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California that use various management technologies to enhance animal performance. The IFSM is a farm process model that simulates crop growth, feed production, animal performance, and manure production and handling through time to predict the performance, economics, and environmental impacts of production systems. The simulated beef production systems compared were 1) Angus-natural, with no use of growth-enhancing technologies, 2) Angus-implant, with ionophore and growth-promoting implant (e.g., estrogen/trenbolone acetate-based) application, 3) Angus-ß2-adrenergic agonists (BAA; e.g., zilpaterol), with ionophore, growth-promoting implant, and BAA application, 4) Holstein-implant, with growth implant and ionophore application, and 5) Holstein-BAA, with ionophore, growth implant, and BAA use. During the feedlot phase, use of BAA decreased NH(3) emission by 4 to 9 g/kg HCW, resulting in a 7% decrease in NH(3) loss from the full production system. Combined use of ionophore, growth implant, and BAA treatments decreased NH(3) emission from the full production system by 14 g/kg HCW, or 13%. The C footprint of beef was decreased by 2.2 kg carbon dioxide equivalent (CO(2)e)/kg HCW using all the growth-promoting technologies, and the Holstein beef footprint was decreased by 0.5 kg CO(2)e/kg HCW using BAA. Over the full production systems, these decreases were relatively small at 9% and 5% for Angus and Holstein beef, respectively. The growth-promoting technologies we evaluated are a cost-effective way to mitigate GHG and NH(3) emissions, but naturally managed cattle can bring a similar net return to Angus cattle treated with growth-promoting technologies when sold at an 8% greater premium price.
提高动物生产性能被认为是减少每单位生产产品的畜牧生产温室气体(GHG)和氨气(NH3)排放的最有效缓解策略之一。然而,关于提高动物生产力对牛肉生产系统减排的净影响的信息很少。本研究使用综合农场系统模型(IFSM)进行了部分生命周期评估(LCA),以估算加利福尼亚州使用各种管理技术来提高动物生产性能的代表性牛肉生产系统的 GHG 和 NH3 排放。IFSM 是一种农场过程模型,可通过随时间模拟作物生长、饲料生产、动物性能和粪便生产和处理来预测生产系统的性能、经济和环境影响。比较的模拟牛肉生产系统为 1)安格斯天然型,不使用生长促进技术,2)安格斯植入型,使用离子载体和生长促进植入物(例如,基于雌激素/三烯醇酮乙酸酯的),3)安格斯β2-肾上腺素能激动剂(BAA;例如,齐帕特罗),使用离子载体、生长促进植入物和 BAA,4)荷斯坦植入型,使用生长植入物和离子载体,5)荷斯坦 BAA,使用离子载体、生长植入物和 BAA。在育肥阶段,使用 BAA 可使 NH3 排放减少 4-9 g/kgHCW,使整个生产系统的 NH3 损失减少 7%。联合使用离子载体、生长植入物和 BAA 处理可使整个生产系统的 NH3 排放量减少 14 g/kgHCW,即 13%。使用所有生长促进技术,牛肉的 C 足迹减少了 2.2 千克二氧化碳当量(CO2e)/kgHCW,荷斯坦牛肉的 C 足迹减少了 0.5 千克 CO2e/kgHCW。在整个生产系统中,安格斯牛肉和荷斯坦牛肉的降幅分别相对较小,为 9%和 5%。我们评估的生长促进技术是减轻 GHG 和 NH3 排放的一种具有成本效益的方法,但在以 8%的溢价出售时,自然管理的牛可以给安格斯牛带来与使用生长促进技术相似的净回报。