Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
PLoS One. 2012;7(8):e43424. doi: 10.1371/journal.pone.0043424. Epub 2012 Aug 27.
Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6) CFU per rat, (or vehicle for shams); heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C) and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8) were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria-localized signaling molecules Src and SHP2 constitute a potential signaling pathway to affect mitochondrial dysfunction in the heart during sepsis.
我们之前的研究表明,脓毒症会导致心脏中线粒体功能障碍和氧化应激增加。本研究采用肺炎相关性脓毒症大鼠模型,探讨了线粒体定位信号分子酪氨酸激酶Src 和酪氨酸磷酸酶 SHP2 在脓毒症诱导的心肌线粒体功能障碍中的作用。SD 大鼠气管内注射肺炎链球菌,每只大鼠 4×10(6)CFU(或假手术对照);然后收获心脏组织并制备亚细胞成分。通过 Western blot,我们在接种后 24 小时内检测到心肌线粒体中 Src 逐渐显著减少,SHP2 增加。此外,在接种后 24 小时,脓毒症导致所有心肌线粒体蛋白的酪氨酸磷酸化几乎减少了 70%。在脓毒症大鼠的心脏中,某些线粒体结构蛋白(孔蛋白、亲环素 D 和细胞色素 C)和功能蛋白(复合物 II 亚基 30kD 和复合物 I 亚基 NDUFB8)的酪氨酸磷酸化减少。体外,重组活性 Src 激酶预处理线粒体部分可提高 OXPHOS 复合物 I 和 II-III 的活性,而 SHP2 磷酸酶的作用则相反。在相同条件下,Src 和 SHP2 均不影响复合物 IV 和 V 的活性。通过免疫沉淀,我们表明 Src 和 SHP2 一致地与心脏中的复合物 I 和 III 相互作用,表明复合物 I 和 III 含有 Src 和 SHP2 的潜在底物。此外,体外用活性 Src 处理线粒体部分可抑制脓毒症相关的 mtROS 产生并保护琥珀酸脱氢酶活性,这是线粒体氧化应激的间接标志物。相反,在相同的体外条件下,活性 SHP2 磷酸酶过度产生 mtROS 并失活琥珀酸脱氢酶。总之,我们的数据表明,线粒体定位信号分子 Src 和 SHP2 的变化构成了影响脓毒症中心肌线粒体功能障碍的潜在信号通路。