Suppr超能文献

GlmU 反应的动力学建模——治疗应用中反应的优先级。

Kinetic modelling of GlmU reactions - prioritization of reaction for therapeutic application.

机构信息

Innovative Medicine for Infection (iMed Infection), AstraZeneca India Pvt. Ltd., Bangalore, Karnataka, India.

出版信息

PLoS One. 2012;7(8):e43969. doi: 10.1371/journal.pone.0043969. Epub 2012 Aug 27.

Abstract

Mycobacterium tuberculosis(Mtu), a successful pathogen, has developed resistance against the existing anti-tubercular drugs necessitating discovery of drugs with novel action. Enzymes involved in peptidoglycan biosynthesis are attractive targets for antibacterial drug discovery. The bifunctional enzyme mycobacterial GlmU (Glucosamine 1-phosphate N-acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase) has been a target enzyme for drug discovery. Its C- and N- terminal domains catalyze acetyltransferase (rxn-1) and uridyltransferase (rxn-2) activities respectively and the final product is involved in peptidoglycan synthesis. However, the bifunctional nature of GlmU poses difficulty in deciding which function to be intervened for therapeutic advantage. Genetic analysis showed this as an essential gene but it is still unclear whether any one or both of the activities are critical for cell survival. Often enzymatic activity with suitable high-throughput assay is chosen for random screening, which may not be the appropriate biological function inhibited for maximal effect. Prediction of rate-limiting function by dynamic network analysis of reactions could be an option to identify the appropriate function. With a view to provide insights into biochemical assays with appropriate activity for inhibitor screening, kinetic modelling studies on GlmU were undertaken. Kinetic model of Mtu GlmU-catalyzed reactions was built based on the available kinetic data on Mtu and deduction from Escherichia coli data. Several model variants were constructed including coupled/decoupled, varying metabolite concentrations and presence/absence of product inhibitions. This study demonstrates that in coupled model at low metabolite concentrations, inhibition of either of the GlmU reactions cause significant decrement in the overall GlmU rate. However at higher metabolite concentrations, rxn-2 showed higher decrement. Moreover, with available intracellular concentration of the metabolites and in vivo variant of model, uncompetitive inhibition of rxn-2 caused highest decrement. Thus, at physiologically relevant metabolite concentrations, targeting uridyltranferase activity of Mtu GlmU would be a better choice for therapeutic intervention.

摘要

结核分枝杆菌(Mtu)是一种成功的病原体,已经对现有的抗结核药物产生了耐药性,因此需要发现具有新作用机制的药物。参与肽聚糖生物合成的酶是抗菌药物发现的有吸引力的靶标。分枝杆菌 GlmU(葡萄糖胺 1-磷酸 N-乙酰基转移酶/N-乙酰葡萄糖胺-1-磷酸尿苷转移酶)的双功能酶已成为药物发现的靶标酶。其 C 端和 N 端结构域分别催化乙酰基转移酶(rxn-1)和尿苷转移酶(rxn-2)活性,最终产物参与肽聚糖合成。然而,GlmU 的双功能性质使得难以确定干预哪种功能以获得治疗优势。遗传分析表明这是一个必需基因,但尚不清楚是一种还是两种活性对细胞存活至关重要。通常选择具有合适高通量测定的酶活性进行随机筛选,但这可能不是抑制最大效果的适当生物学功能。通过反应的动态网络分析预测限速功能可能是确定适当功能的一种选择。为了深入了解具有适当活性的生化测定,我们对 GlmU 进行了动力学建模研究。基于现有的 Mtu GlmU 催化反应的动力学数据和从大肠杆菌数据推断,建立了 Mtu GlmU 催化反应的动力学模型。构建了几个模型变体,包括偶联/解偶联、改变代谢物浓度和存在/不存在产物抑制。这项研究表明,在低代谢物浓度下的偶联模型中,抑制 GlmU 的任何一种反应都会导致 GlmU 总速率显著下降。然而,在较高的代谢物浓度下,rxn-2 显示出更高的下降。此外,在可用的细胞内代谢物浓度和体内模型的变体下,rxn-2 的竞争性抑制导致最高的下降。因此,在生理相关的代谢物浓度下,靶向 Mtu GlmU 的尿苷转移酶活性将是治疗干预的更好选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a57f/3428340/145987c8ef8a/pone.0043969.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验