Suppr超能文献

为老年司机和非老年司机建立高速公路事故计数的时间模型。

Temporal modeling of highway crash counts for senior and non-senior drivers.

机构信息

Department of Statistics, University of Connecticut, 215 Glenbrook Road, Storrs, CT 06268, USA.

出版信息

Accid Anal Prev. 2013 Jan;50:1003-13. doi: 10.1016/j.aap.2012.08.001. Epub 2012 Sep 4.

Abstract

This paper introduces dynamic time series modeling in a Bayesian framework to uncover temporal patterns in highway crashes in Connecticut. Existing state sources provide data describing the time for each crash and demographic attributes of persons involved over the time period from January 1995 to December 2009 as well as the traffic volumes and the characteristics of the roads on which these crashes occurred. Induced exposure techniques are used to estimate the exposure for senior and non-senior drivers by road access type (limited access and surface roads) and area type (urban or rural). We show that these dynamic models fit the data better than the usual GLM framework while also permitting discovery of temporal trends in the estimation of parameters, and that computational difficulties arising from Markov Chain Monte Carlo (MCMC) techniques can be handled by the innovative Integrated Nested Laplace Approximations (INLA). Using these techniques we find that while overall safety is increasing over time, the level of safety for senior drivers has remained more stagnant than for non-senior drivers, particularly on rural limited access roads. The greatest opportunity for improvement of safety for senior drivers is on rural surface roads.

摘要

本文在贝叶斯框架下引入动态时间序列建模,以揭示康涅狄格州高速公路事故的时间模式。现有的州级数据源提供了从 1995 年 1 月至 2009 年 12 月期间每个事故发生的时间以及涉及人员的人口统计属性、交通量以及这些事故发生的道路特征的数据。诱增暴露技术用于通过道路接入类型(有限接入和表面道路)和区域类型(城市或农村)来估计老年和非老年驾驶员的暴露。我们表明,这些动态模型比常用的 GLM 框架更能拟合数据,同时还允许在参数估计中发现时间趋势,并且可以通过创新的集成嵌套拉普拉斯近似 (INLA) 处理由于马尔可夫链蒙特卡罗 (MCMC) 技术而产生的计算困难。使用这些技术,我们发现尽管整体安全性随着时间的推移而提高,但老年驾驶员的安全性水平比非老年驾驶员更为停滞不前,特别是在农村有限接入道路上。改善老年驾驶员安全性的最大机会在于农村表面道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验