C 臂 CT 中用于经导管主动脉瓣植入术的自动主动脉分割和瓣膜标志点检测。
Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation.
机构信息
Imaging and Computer Vision Technology Field, Siemens Corporate Research, Princeton, NJ 08540, USA.
出版信息
IEEE Trans Med Imaging. 2012 Dec;31(12):2307-21. doi: 10.1109/TMI.2012.2216541. Epub 2012 Aug 31.
Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe aortic valve stenosis. As an emerging imaging technique, C-arm computed tomography (CT) plays a more and more important role in TAVI on both pre-operative surgical planning (e.g., providing 3-D valve measurements) and intra-operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation. Taking about 1.1 s to process a volume, it is also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve. Promising outcomes have been achieved in real clinical applications.
经导管主动脉瓣植入术(TAVI)是一种治疗严重主动脉瓣狭窄的微创方法。C 臂 CT 作为一种新兴的成像技术,在 TAVI 中术前手术规划(如提供 3D 瓣膜测量)和术中引导(如确定适当的 C 臂角度)中发挥着越来越重要的作用。在 C 臂 CT 容积中自动进行主动脉分割和主动脉瓣标志点检测,有助于将 C 臂 CT 无缝集成到 TAVI 工作流程中,并改善患者护理。在本文中,我们提出了一种基于部分的主动脉分割方法,该方法可以处理主动脉结构的变化,即使在体积中缺失主动脉弓和降主动脉的情况下也能处理。整个主动脉模型被分为四个部分:主动脉根部、升主动脉、主动脉弓和降主动脉。分别对每个部分应用判别式学习来训练一个检测器,以利用专家注释数据集所嵌入的丰富领域知识。还采用一种高效的分层方法自动检测八个重要的主动脉瓣标志点(三个瓣膜铰链、三个瓣膜交界和两个冠状动脉口)。我们的方法在各种实际临床环境中观察到的变化下具有很强的鲁棒性,包括视野变化、造影剂注射、扫描时间和主动脉瓣反流。处理一个容积大约需要 1.1 秒,计算效率也很高。在自动提取的特定于患者的主动脉模型的指导下,医生可以正确确定 C 臂角度并部署人工瓣膜。在实际临床应用中取得了令人鼓舞的结果。