Suppr超能文献

心血管医学中的人工智能

Artificial Intelligence in Cardiovascular Medicine.

作者信息

Seetharam Karthik, Shrestha Sirish, Sengupta Partho P

机构信息

WVU Heart & Vascular Institute, 1 Medical Center Drive, Morgantown, WV, 26506, USA.

出版信息

Curr Treat Options Cardiovasc Med. 2019 May 14;21(6):25. doi: 10.1007/s11936-019-0728-1.

Abstract

PURPOSE OF REVIEW

The ripples of artificial intelligence are being felt in various sectors of human life. Machine learning, a subset of artificial intelligence, extracts information from large databases of information and is gaining traction in various fields of cardiology. In this review, we highlight noteworthy examples of machine learning utilization in echocardiography, nuclear cardiology, computed tomography, and magnetic resonance imaging over the past year.

RECENT FINDINGS

In the past year, machine learning (ML) has expanded its boundaries in cardiology with several positive results. Some studies have integrated clinical and imaging information to further augment the accuracy of these ML algorithms. All the studies mentioned in this review have clearly demonstrated superior results of ML in relation to conventional approaches for identifying obstructions or predicting major adverse events in reference to conventional approaches. As the influx of data arriving from gradually evolving technologies in health care and wearable devices continues to be more complex, ML may serve as the bridge to transcend the gap between health care and patients in the future. In order to facilitate a seamless transition between both, a few issues must be resolved for a successful implementation of ML in health care.

摘要

综述目的

人工智能的影响正波及人类生活的各个领域。机器学习作为人工智能的一个分支,可从大型信息数据库中提取信息,且在心脏病学的各个领域越来越受到关注。在本综述中,我们重点介绍过去一年机器学习在超声心动图、核心脏病学、计算机断层扫描和磁共振成像中的显著应用实例。

最新发现

在过去一年里,机器学习在心脏病学领域不断拓展边界,并取得了一些积极成果。一些研究将临床和影像信息相结合,进一步提高了这些机器学习算法的准确性。本综述中提及的所有研究均明确表明,与传统方法相比,机器学习在识别梗阻或预测主要不良事件方面具有更优的结果。随着来自医疗保健和可穿戴设备中逐渐发展的技术所产生的数据量不断增加且愈发复杂,机器学习未来可能成为弥合医疗保健与患者之间差距的桥梁。为了实现两者之间的无缝过渡,要想在医疗保健中成功应用机器学习,还必须解决一些问题。

相似文献

1
Artificial Intelligence in Cardiovascular Medicine.心血管医学中的人工智能
Curr Treat Options Cardiovasc Med. 2019 May 14;21(6):25. doi: 10.1007/s11936-019-0728-1.
3
The Role of Artificial Intelligence in Echocardiography.人工智能在超声心动图中的作用。
Curr Cardiol Rep. 2020 Jul 30;22(9):99. doi: 10.1007/s11886-020-01329-7.
10
Artificial Intelligence in Cardiology.人工智能在心脏病学中的应用。
J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.

引用本文的文献

1
Synthetic generation of cardiac tissue motion from surface electrocardiograms.从体表心电图合成心脏组织运动
Nat Cardiovasc Res. 2025 Apr;4(4):445-457. doi: 10.1038/s44161-025-00629-x. Epub 2025 Apr 14.
5
Broadening Perspectives of Artificial Intelligence in Echocardiography.拓宽人工智能在超声心动图中的应用视野
Cardiol Ther. 2024 Jun;13(2):267-279. doi: 10.1007/s40119-024-00368-3. Epub 2024 May 4.
8
Role of Deep Learning in Computed Tomography.深度学习在计算机断层扫描中的作用。
Cureus. 2023 May 17;15(5):e39160. doi: 10.7759/cureus.39160. eCollection 2023 May.

本文引用的文献

3
Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans.用于CT扫描中实时3D地标检测的多尺度深度强化学习
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):176-189. doi: 10.1109/TPAMI.2017.2782687. Epub 2017 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验