Suppr超能文献

递归多分辨率卷积神经网络用于 3D 主动脉瓣环平面测量。

Recursive multiresolution convolutional neural networks for 3D aortic valve annulus planimetry.

机构信息

Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada.

Division of Cardiology, McGill University Health Centre, Montreal, QC, Canada.

出版信息

Int J Comput Assist Radiol Surg. 2020 Apr;15(4):577-588. doi: 10.1007/s11548-020-02131-0. Epub 2020 Mar 4.

Abstract

PURPOSE

Transcatheter aortic valve replacement (TAVR) is the standard of care in a large population of patients with severe symptomatic aortic valve stenosis. The sizing of TAVR devices is done from ECG-gated CT angiographic image volumes. The most crucial step of the analysis is the determination of the aortic valve annular plane. In this paper, we present a fully tridimensional recursive multiresolution convolutional neural network (CNN) to infer the location and orientation of the aortic valve annular plane.

METHODS

We manually labeled 1007 ECG-gated CT volumes from 94 patients with severe degenerative aortic valve stenosis. The algorithm was implemented and trained using the TensorFlow framework (Google LLC, USA). We performed K-fold cross-validation with K = 9 groups such that CT volumes from a given patient are assigned to only one group.

RESULTS

We achieved an average out-of-plane localization error of (0.7 ± 0.6) mm for the training dataset and of (0.9 ± 0.8) mm for the evaluation dataset, which is on par with other published methods and clinically insignificant. The angular orientation error was (3.9 ± 2.3)° for the training dataset and (6.4 ± 4.0)° for the evaluation dataset. For the evaluation dataset, 84.6% of evaluation image volumes had a better than 10° angular error, which is similar to expert-level accuracy. When measured in the inferred annular plane, the relative measurement error was (4.73 ± 5.32)% for the annular area and (2.46 ± 2.94)% for the annular perimeter.

CONCLUSIONS

The proposed algorithm is the first application of CNN to aortic valve planimetry and achieves an accuracy on par with proposed automated methods for localization and approaches an expert-level accuracy for orientation. The method relies on no heuristic specific to the aortic valve and may be generalizable to other anatomical features.

摘要

目的

经导管主动脉瓣置换术(TAVR)是大量严重症状性主动脉瓣狭窄患者的标准治疗方法。TAVR 器械的尺寸是从 ECG 门控 CT 血管造影图像体积中确定的。分析的最关键步骤是确定主动脉瓣环平面。本文介绍了一种完全三维递归多分辨率卷积神经网络(CNN),用于推断主动脉瓣环平面的位置和方向。

方法

我们手动标记了 94 例严重退行性主动脉瓣狭窄患者的 1007 个 ECG 门控 CT 体积。该算法是使用 TensorFlow 框架(美国谷歌有限责任公司)实现和训练的。我们采用 K 折交叉验证,其中 K=9 组,使得来自给定患者的 CT 体积仅分配给一组。

结果

我们在训练数据集上获得了平均 0.7±0.6 毫米的离面定位误差,在评估数据集上获得了 0.9±0.8 毫米的平均离面定位误差,与其他已发表的方法相当,且临床意义不大。角向定位误差在训练数据集上为 3.9±2.3°,在评估数据集上为 6.4±4.0°。在评估数据集上,84.6%的评估图像体积的角向误差小于 10°,与专家级精度相似。在推断的瓣环平面上测量时,瓣环面积的相对测量误差为 4.73±5.32%,瓣环周长的相对测量误差为 2.46±2.94%。

结论

该算法是首次将 CNN 应用于主动脉瓣平面图测量,其定位精度与提出的自动方法相当,方向精度接近专家级精度。该方法不依赖于主动脉瓣特有的启发式方法,可能具有普遍性,可以应用于其他解剖特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验