Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616, USA.
ACS Nano. 2012 Oct 23;6(10):8599-610. doi: 10.1021/nn303371y. Epub 2012 Sep 13.
Although nanocrystal morphology is controllable using conventional colloidal synthesis, multiple characterization techniques are typically needed to determine key properties like the nucleation rate, induction time, growth rate, and the resulting morphology. Recently, researchers have demonstrated growth of nanocrystals by in situ electron beam reduction, offering direct observations of single nanocrystals and eliminating the need for multiple characterization techniques; however, they found nanocrystal morphologies consistent with two different growth mechanisms for the same electron beam parameters. Here we show that the electron beam current plays a role analogous to the concentration of reducing agent in conventional synthesis, by controlling the growth mechanism and final morphology of silver nanocrystals grown via in situ electron beam reduction. We demonstrate that low beam currents encourage reaction limited growth that yield nanocrystals with faceted structures, while higher beam currents encourage diffusion limited growth that yield spherical nanocrystals. By isolating these two growth regimes, we demonstrate a new level of control over nanocrystal morphology, regulated by the fundamental growth mechanism. We find that the induction threshold dose for nucleation is independent of the beam current, pixel dwell time, and magnification being used. Our results indicate that in situ electron microscopy data can be interpreted by classical models and that systematic dose experiments should be performed for all future in situ liquid studies to confirm the exact mechanisms underlying observations of nucleation and growth.
虽然使用传统胶体合成可以控制纳米晶体的形态,但通常需要多种表征技术来确定关键性质,如成核速率、诱导时间、生长速率和最终形态。最近,研究人员通过原位电子束还原展示了纳米晶体的生长,提供了对单个纳米晶体的直接观察,并消除了对多种表征技术的需求;然而,他们发现对于相同的电子束参数,纳米晶体形态与两种不同的生长机制一致。在这里,我们表明电子束电流通过控制通过原位电子束还原生长的银纳米晶体的生长机制和最终形态,起到了类似于传统合成中还原剂浓度的作用。我们证明,低束电流促进反应限制生长,从而产生具有面心结构的纳米晶体,而较高的束电流则促进扩散限制生长,从而产生球形纳米晶体。通过分离这两种生长状态,我们通过基本的生长机制证明了对纳米晶体形态的新的控制水平。我们发现成核的诱导阈值剂量与束电流、像素停留时间和放大倍数无关。我们的结果表明,可以通过经典模型来解释原位电子显微镜数据,并且应该对所有未来的原位液体研究进行系统的剂量实验,以确认观察到的成核和生长的确切机制。