Suppr超能文献

通过透射电子显微镜以 2.7nm 分辨率在水中成像蛋白质结构。

Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy.

机构信息

Mechanobiology Institute, National University of Singapore, Singapore.

出版信息

Biophys J. 2012 Feb 22;102(4):L15-7. doi: 10.1016/j.bpj.2012.01.009. Epub 2012 Feb 21.

Abstract

We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å(2). The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible.

摘要

我们展示了一种在室温下对液态水中蛋白质进行成像的原位透射电子显微镜技术。将液态样品装入微加工的环境细胞中,用薄氮化硅窗将样品与真空隔离。我们表明,水中顶体束的电子显微镜图像与冰中成像的束相似,并且我们确定在剂量约为 35 e/Å(2)时分辨率至少为 2.7nm。分辨率受到窗口厚度和辐射损伤的限制。令人惊讶的是,我们观察到室温下水的反射强度下降幅度小于 98 K 冰中的下降幅度。因此,我们的技术将未染色和未标记的大分子组装在水中的成像分辨率从光学显微镜的分辨率扩展到电子显微镜的纳米分辨率。我们的结果表明,实时成像蛋白质动力学在概念上是可行的。

相似文献

1
Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy.
Biophys J. 2012 Feb 22;102(4):L15-7. doi: 10.1016/j.bpj.2012.01.009. Epub 2012 Feb 21.
2
Electron microscopy of biological specimens in liquid water.
Biophys J. 2012 Jul 3;103(1):163-4; author reply 165-6. doi: 10.1016/j.bpj.2012.05.042.
5
Microfluidic system for transmission electron microscopy.
Microsc Microanal. 2010 Oct;16(5):622-9. doi: 10.1017/S1431927610093669. Epub 2010 Aug 31.
7
Reduced Radiation Damage in Transmission Electron Microscopy of Proteins in Graphene Liquid Cells.
Nano Lett. 2018 Dec 12;18(12):7435-7440. doi: 10.1021/acs.nanolett.8b02490. Epub 2018 Nov 15.
8
Imaging of soft materials using in situ liquid-cell transmission electron microscopy.
J Phys Condens Matter. 2019 Mar 13;31(10):103001. doi: 10.1088/1361-648X/aaf616. Epub 2018 Dec 4.
9
Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM.
J Electron Microsc (Tokyo). 2011;60(3):217-25. doi: 10.1093/jmicro/dfr011. Epub 2011 Mar 22.
10
Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids.
Biochim Biophys Acta. 2013 Jun;1830(6):3807-15. doi: 10.1016/j.bbagen.2013.03.002. Epub 2013 Mar 13.

引用本文的文献

1
Advancing Cryo-EM and Cryo-ET through Innovation in Sample Carriers: A Perspective.
Anal Chem. 2025 Jun 17;97(23):11959-11967. doi: 10.1021/acs.analchem.5c01534. Epub 2025 Jun 6.
2
Electron videography of a lipid-protein tango.
Sci Adv. 2024 Apr 19;10(16):eadk0217. doi: 10.1126/sciadv.adk0217. Epub 2024 Apr 17.
3
Ouzo Effect Examined at the Nanoscale via Direct Observation of Droplet Nucleation and Morphology.
ACS Cent Sci. 2023 Mar 8;9(3):457-465. doi: 10.1021/acscentsci.2c01194. eCollection 2023 Mar 22.
4
Visualization of G-Quadruplexes, i-Motifs and Their Associates.
Acta Naturae. 2022 Jul-Sep;14(3):4-18. doi: 10.32607/actanaturae.11705.
5
Microfluidics for multiscale studies of biomolecular condensates.
Lab Chip. 2022 Dec 20;23(1):9-24. doi: 10.1039/d2lc00622g.
6
Direct Observation of Emulsion Morphology, Dynamics, and Demulsification.
ACS Nano. 2022 May 24;16(5):7783-7793. doi: 10.1021/acsnano.2c00199. Epub 2022 Mar 18.
7
8
Liquid electron microscopy: then, now and future.
Appl Microsc. 2019 Oct 25;49(1):9. doi: 10.1186/s42649-019-0011-7.
10
Dynamic autofluorescence imaging of intracellular components inside living cells using direct electron beam excitation.
Biomed Opt Express. 2014 Jan 7;5(2):378-86. doi: 10.1364/BOE.5.000378. eCollection 2014 Feb 1.

本文引用的文献

1
Electron microscopy of specimens in liquid.
Nat Nanotechnol. 2011 Oct 23;6(11):695-704. doi: 10.1038/nnano.2011.161.
2
Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1094-9. doi: 10.1073/pnas.0905481107. Epub 2009 Dec 28.
3
Observation of single colloidal platinum nanocrystal growth trajectories.
Science. 2009 Jun 5;324(5932):1309-12. doi: 10.1126/science.1172104.
4
Electron microscopy of whole cells in liquid with nanometer resolution.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2159-64. doi: 10.1073/pnas.0809567106. Epub 2009 Jan 21.
5
Retrospective: radiation damage and its associated "information limitations".
J Struct Biol. 2008 Sep;163(3):271-6. doi: 10.1016/j.jsb.2008.06.001. Epub 2008 Jun 8.
6
Water catalysis of a radical-molecule gas-phase reaction.
Science. 2007 Jan 26;315(5811):497-501. doi: 10.1126/science.1134494.
7
TEMPERATURE EFFECTS ON FREE RADICAL FORMATION AND ELECTRON MIGRATION IN IRRADIATED PROTEINS.
Proc Natl Acad Sci U S A. 1960 Aug;46(8):1137-44. doi: 10.1073/pnas.46.8.1137.
8
Scanning electron microscopy of cells and tissues under fully hydrated conditions.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3346-51. doi: 10.1073/pnas.0400088101. Epub 2004 Feb 26.
10
Electron diffraction of wet proteins: catalase.
Science. 1972 Jul 21;177(4045):268-70. doi: 10.1126/science.177.4045.268.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验