Mechanobiology Institute, National University of Singapore, Singapore.
Biophys J. 2012 Feb 22;102(4):L15-7. doi: 10.1016/j.bpj.2012.01.009. Epub 2012 Feb 21.
We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å(2). The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible.
我们展示了一种在室温下对液态水中蛋白质进行成像的原位透射电子显微镜技术。将液态样品装入微加工的环境细胞中,用薄氮化硅窗将样品与真空隔离。我们表明,水中顶体束的电子显微镜图像与冰中成像的束相似,并且我们确定在剂量约为 35 e/Å(2)时分辨率至少为 2.7nm。分辨率受到窗口厚度和辐射损伤的限制。令人惊讶的是,我们观察到室温下水的反射强度下降幅度小于 98 K 冰中的下降幅度。因此,我们的技术将未染色和未标记的大分子组装在水中的成像分辨率从光学显微镜的分辨率扩展到电子显微镜的纳米分辨率。我们的结果表明,实时成像蛋白质动力学在概念上是可行的。